SEARCH

SEARCH BY CITATION

REFERENCES

  • Abramov O. and Kring D. A. 2004. Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. Journal of Geophysical Research 109, doi:10.1029/2003JE002213.
  • Abramov O. and Kring D. A. 2005. Impact-induced hydrothermal activity on early Mars. Journal of Geophysical Research 110, doi:10.1029/2005JE002453.
  • Ahrens T. J. and O'Keefe J. D. 1972. Shock melting and vaporization of lunar rocks and minerals. The Moon 4: 214249.
  • Ames D. E., Watkinson D. H., and Parrish R. R. 1998. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26: 447450.
  • Ames D. E., Kjarsgaard I. M., Pope K. O., Dressler B., and Pilkington M. 2004. Secondary alteration of the impactite and mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science 39: 11451167.
  • Ariskin A. A., Deutsch A., and Ostermann M. 1999. The Sudbury “igneous” complex: Simulating phase equilibria and in situ differentiation for two proposed parental magmas. In Large meteorite impacts and planetary evolution II, edited by DresslerB. O. and SharptonV. L. GSA Special Paper #339. Boulder, Colorado: Geological Society of America. pp. 337387.
  • Barron E. J. 1983. A warm, equable Cretaceous: The nature of the problem. Earth Science Review 19: 305338.
  • Bell C., Morgan J. V., Hampson G. J., and Trudgill B. 2004. Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics & Planetary Science 39: 10891098.
  • Binder A. B. and Lange M. A. 1980. On the thermal history, thermal state, and related tectonism of a moon of fission origin. Journal of Geophysical Research 85: 31943208.
  • Carstens H. 1975. Thermal history of impact melt rocks in the Fennoscandian Shield. Contributions to Mineralogy and Petrology 50: 145155.
  • Christeson G. L., Nakamura Y., Buffler R. T., Morgan J., and Warner M. 2001. Deep crustal structure of the Chicxulub impact crater. Journal of Geophysical Research 106: 21, 751–21,769.
  • Clifford M. 1993. A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research 98: 10, 97311,016.
  • Clark S. P. 1966. Thermal conductivity. In Handbook of physical constants, edited by ClarkS. P. Memoir #97. New York: Geological Society of America. pp. 459482.
  • Cohen B. A., Swindle T. D., and Kring D. A. 2000. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290: 17541756.
  • Collins G. S., Melosh H. J., Morgan J. V., and Warner M. R. 2002. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157: 2433.
  • Daubar I. J. and Kring D. A. 2001. Impact-induced hydrothermal systems: Heat sources and lifetimes (abstract #1727). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Dobson P. F., Kneafsey T. J., Hulen J., and Simmons A. 2003. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. Journal of Volcanology and Geothermal Research 123: 313324.
  • Dressler B. O., Sharpton V. L., Morgan J., Buffler R., Moran D., Smit J., Stöffler D., and Urrutia J. 2003. Investigating a 65-Ma-old smoking gun: Deep drilling of the Chicxulub impact structure. Eos 84: 125130.
  • Ebbing J., Janle P., Koulouris J., and Milkereit B. 2001. 3D gravity modelling of the Chicxulub impact structure. Planetary and Space Science 49: 599609.
  • El Goresy A. 1965. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research 70: 34533456.
  • Englehardt von W., Arndt J., Fecker B., and Pankau H. G. 1995. Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses. Meteoritics 30: 279293.
  • Farrow C. E. G. and Watkinson D. H. 1992. Alteration and the role of fluids in Ni, Cu and platinum-group element deposition, Sudbury Igneous Complex contact, Onaping-Levack area, Ontario. Mineralogy and Petrology 46: 611619.
  • Fournier R. O. 1989. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annual Review of Earth and Planetary Sciences 17: 1353.
  • Fournier R. O. 1991. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophysical Research Letters 18: 955958.
  • Frakes L. A. 1979. Climates through geologic time. Amsterdam: Elsevier Scientific Publication Company. 310 p.
  • Grieve R. A. F. 1994. An impact model of the Sudbury structure. Proceedings of Sudbury-Noril'sk Symposium. Ontario Geological Survey, Special Volume 5. pp. 119132.
  • Grieve R. A. F. and Pesonen L. J. 1992. The terrestrial impact cratering record. Tectonophysics 216: 130.
  • Grieve R. A. F., Dence M. R., and Robertson P. B. 1977. Cratering processes: As interpreted from the occurrence of impact melts. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 791814.
  • Goto K., Tada R., Tajika E., Bralower T. J., Hasegawa T., and Matsui T. 2004. Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteoritics & Planetary Science 39: 12331247.
  • Gulick V. C. 2001. Some ground water considerations regarding the formation of small Martian gullies (abstract #2193). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Hayba D. O. and Ingebritsen S. E. 1994. The computer model HYDROTHERM, a three-dimensional finite-difference model to simulate ground-water flow and heat transport in the temperature range of 0 to 1,200 degrees Celsius. U.S. Geological Survey Water-Resources Investigations Report 94-4045. Reston, Virginia: U.S. Geological Survey. 85 p.
  • Hayba D. O. and Ingebritsen S. E. 1997. Multiphase groundwater flow near cooling plutons. Journal of Geophysical Research 102: 12, 23512,252.
  • Hecht L., Wittmann A., Schmitt R. T., and Stöffler D. 2004. Composition of impact melt particles and the effects of post-impact alteration in suevitic rocks at the Yaxcopoil-1 drill core, Chicxulub crater, Mexico. Meteoritics & Planetary Science 39: 11691186.
  • Hildebrand A. R., Penfield G. T., Kring D. A., Pilkington M., Camargo A. Z., Jacobson S. B., and Boynton W. V. 1991. A possible Cretaceous-Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19: 867871.
  • Hörz F. 1965. Untersuchungen an Riesgläsern. Beiträge zur Mineralogie und Petrologie 11: 621661.
  • Huber B. T., Hodell D. A., and Hamilton C. P. 1995. Middle-late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107: 11641191.
  • Ivanov B. A. 2004. Heating of the lithosphere during meteorite cratering. Solar System Research 38: 266278.
  • Jaeger J. C. 1968. Cooling and solidification of igneous rocks in basalts. In The Poldervaart treatise on rocks of basaltic composition, edited by HessH. H. and PoldervaartA. New York: John Wiley. pp. 503535.
  • Keith T. E. C., White D. E., and Beeson M. H. 1978. Hydrothermal alteration and self-sealing in Y-7 and Y-8 drill holes in northern part of Upper Geyser Basin, Yellowstone National Park, Wyoming. Professional Paper 1054-A. Denver, Colorado: U.S. Geological Survey. 26 p.
  • Kettrup B. and Deutsch A. 2003. Geochemical variability of the Yucatán basement: Constraints from crystalline clasts in Chicxulub impactites. Meteoritics & Planetary Science 38: 10791092.
  • Kolodny Y. and Raab M. 1988. Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeography, Palaeoclimatology, Palaeoecology 64: 5967.
  • Kring D. A. 1995. The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research 100: 16, 97916, 986.
  • Kring D. A. 2000. Impact events and their effect on the origin, evolution, and distribution of life. GSA Today 10: 17.
  • Kring D. A. 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries (∼24 km) and Chicxulub (∼180 km) impact craters. Chemie der Erde 65: 146.
  • Kring D. A. Forthcoming. The Chicxulub impact event and its environmental consequences at the K/T boundary. Paleogeography, Paleoclimatology, Paleoecology.
  • Kring D. A. and Boynton W. V. 1992. The petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature 358: 141144.
  • Kring D. A. and Cohen B. A. 2002. Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research 107, doi:10.1029/2001JE001529.
  • Kring D. A., Hildebrand A. R., and Boynton W. V. 1991. The petrology of an andesitic melt rock and a polymict breccia from the interior of the Chicxulub structure, Yucatán, Mexico (abstract). 22nd Lunar and Planetary Science Conference. pp. 755756.
  • Kring D. A., Zurcher L., Hörz F., and Fucugauchi Urrutia J. 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science 39: 879897.
  • Lüders V. and Rickers K. 2004. Fluid inclusion evidence for impact-related hydrothermal fluid and hydrocarbon migration in Cretaceous sediments of the ICDP-Chicxulub drill core Yax-1. Meteoritics & Planetary Science 39: 11871197.
  • Lüders V., Horsfield B., Kenkmann T., Mingram B., and Wittmann A. 2003. Hydrocarbons and aqueous fluids in Cretaceous sediments of the ICDP-Chicxulub drill core Yax-1 (abstract #1378). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Manning C. E. and Ingebritsen S. E. 1999. Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Reviews of Geophysics 37: 127150.
  • Mayr S., Burkhardt H., Popov Yu., Romushkevich R., and Bayuk I. 2005. Geothermal and petrophysical investigations within the Chicxulub Scientific Drilling Project—Physical properties of rocks in the borehole Yax-1 (abstract). Integrated Ocean Drilling Program/International Continental Drilling Program Joint Meeting. CD-ROM.
  • Mojzsis S. J. and Harrison T. M. 2000. Vestiges of a beginning: Clues to the emergent biosphere recorded in the oldest known sedimentary rocks. GSA Today 10: 16.
  • Morgan J., Warner M., Brittan J., Buffler R., Camargo A., Christeson G., Dentons P., Hildebrand A., Hobbs R., MacIntyre H., Mackenzie G., Maguires P., Marin L., Nakamura Y., Pilkington M., Sharpton V., and Snyders D. 1997. Size and morphology of the Chicxulub impact crater. Nature 390: 472476.
  • Morgan J. V., Warner M. R., Collins G. S., Melosh H. J., and Christeson G. L. 2000. Peak ring formation in large impact craters: Geophysical constraints from Chicxulub. Earth and Planetary Science Letters 183: 347354.
  • Morgan J. V., Christeson G. L., and Zelt C. A. 2002. Testing the resolution of a 3D velocity tomogram across the Chicxulub crater. Tectonophysics 355: 215226.
  • Naumov M. V. 2002. Impact-generated hydrothermal systems: Data from Popigai, Kara, and Puchezh-Katunki impact structures. In Impacts in Precambrian shields, edited by PladoJ. and PesonenL. J. New York: Springer. pp. 117171.
  • Nordyke M. D. 1964. Cratering experience with chemical and nuclear explosives. Proceedings, Third Plowshare Symposium-Engineering with Nuclear Explosives. U.S. Atomic Energy Commission Report TID-7695. pp. 5173.
  • O'Keefe J. D. and Ahrens T. J. 1977. Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. Proceedings, 8th Lunar Science Conference. pp. 33573374.
  • Onorato P. I. K., Uhlmann D. R., and Simonds C. H. 1978. The thermal history of the Manicouagan impact melt sheet, Quebec. Journal of Geophysical Research 83: 27892798.
  • Osinski G. R., Spray J. G., and Lee P. 2001. Impact-induced hydrothermal activity in the Haughton impact structure, Canada: Generation of a transient, warm, wet oasis. Meteoritics & Planetary Science 36: 731745.
  • Osinski G. R., Grieve R. A. F., and Spray J. G. 2004. The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteoritics & Planetary Science 39: 16551683.
  • Osinski G. R., Lee P., Parnell J., Spray J. G., and Baron M. 2005. A case study of impact-induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 18591877.
  • Pace N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734740.
  • Phinney W. C. and Simonds C. H. 1977. Dynamical implications of the petrology and distribution of impact melt rocks. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 771790.
  • Pierazzo E., Kring D. A., and Melosh H. J. 1998. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. Journal of Geophysical Research 103: 28, 60728, 626.
  • Pike R. 1977. Size dependence in the shape of fresh impact craters on the Moon. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 489509.
  • Pilkington M., Hildebrand A. R., and Ortiz-Aleman C. 1994. Gravity and magnetic field modeling and structure of the Chicxulub Crater, Mexico. Journal of Geophysical Research 99: 13,14713,162.
  • Pope K. O., Kieffer S. W., and Ames D. E. 2004. Empirical and theoretical comparisons of the Chicxulub and Sudbury impact structures. Meteoritics & Planetary Science 39: 97116.
  • Popov Yu., Romushkevich R., Bayuk I., Korobkov D., Mayr S., Burkhardt H., and Wilhelm H. 2004. Physical properties of rocks from the upper part of the Yaxcopoil-1 drillhole, Chicxulub crater. Meteoritics & Planetary Science 39: 799812.
  • Prevec S. A. and Cawthorn R. G. 2002. Thermal evolution and interaction between impact melt sheet and footwall: A genetic model for the contact sublayer of the Sudbury Igneous Complex, Canada. Journal of Geophysical Research 107, doi:10.1029/2001JB000525.
  • Rathbun J. A. and Squyres S. W. 2002. Hydrothermal systems associated with Martian impact craters. Icarus 157: 362372.
  • Robertson P. B. and Grieve R. A. F. 1977. Shock attenuation at terrestrial impact structures. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 687702.
  • Rowe A. J., Wilkinson J. J., Coles B. J., and Morgan J. V. 2004. Chicxulub: Testing for post-impact hydrothermal input into the Tertiary ocean. Meteoritics & Planetary Science 39: 12231231.
  • Ryder G. 1990. Lunar samples, lunar accretion, and the early bombardment of the Moon. Eos 71: 322323.
  • Ryder G. 2000. Ancient intense impacting: A positive effect on the origin of life (abstract #B22B-01). Eos 81, 2000 AGU Spring Meeting.
  • Schuraytz B. C., Sharpton V. L., and Marin L. E. 1994. Petrology of impact-melt rocks at the Chicxulub multiring basin, Yucatán, Mexico. Geology 22: 868872.
  • Sharpton V. L., Dalrymple G. D., Marin L. E., Ryder G., Schuraytz B. C., and Urruita-Fucugauchi J. 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature 359: 819820.
  • Sharpton V. L., Marín L. E., Carney J. L., Lee S., Ryder G., Schuraytz B. C., Sikora P., and Spudis P. D. 1996. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. In The Cretaceous-Tertiary event and other catastrophes in Earth history, edited by RyderG., FastovskyD., and GartnerS. GSA Special Paper #307. Boulder, Colorado: Geological Society of America. pp. 5574.
  • Simonds C. H., Warner J. L., Phinney W. C., and McGee P. E. 1976. Thermal model for impact breccia lithification: Manicouagan and the Moon. Proceedings, 7th Lunar Science Conference. pp. 25092528.
  • Stöffler D., Artemieva N. A., Ivanov B. A., Hecht L., Kenkmann T., Schmitt R. T., Tagle R. A., and Wittmann A. 2004. Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteoritics & Planetary Science 39: 10351067.
  • Tera F., Papanastassiou D. A., and Wasserburg G. J. 1974. Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters 22: 121.
  • Thorsos I. E., Newsom H. E., and Davies A. D. 2001. Availability of heat to drive hydrothermal systems in large Martian impact craters (abstract #2011). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Turner G., Cadogan P. H., and Yonge C. J. 1973. Argon selenochronology. Proceedings, 4th Lunar Science Conference. pp. 18891914.
  • Turtle E. P., Pierazzo E., and O'Brien D. P. 2003. Numerical modeling of impact heating of the Vredefort impact structure. Meteoritics & Planetary Science 38: 293303.
  • Upchurch G. R. and Wolfe J. A. 1987. Mid-Cretaceous to Early Tertiary vegetation and climate: Evidence from fossil leaves and wood. In The origins of angiosperms and their biological consequences, edited by FriisE. M., ChalonerW. G., and CraneP. R. Cambridge: Cambridge University Press. pp. 75105.
  • Versh E., Kirsimäe K., Jõeleht A., and Plado J. 2005. Cooling of the Kärdla impact crater: I. The mineral paragenetic sequence observation. Meteoritics & Planetary Science 40: 319.
  • Warren P. H., Claeys P., and Cedillo-Pardo E. 1996. Mega-impact melt petrology (Chicxulub, Sudbury, and the Moon): Effects of scale and other factors on potential for fractional crystallization and development of cumulates. In The Cretaceous-Tertiary event and other catastrophes in Earth history, edited by RyderG., FastovskyD., and GartnerS. GSA Special Paper #307. Boulder, Colorado: Geological Society of America. pp. 105124.
  • Wilhelm H., Heidinger P., Šafanda J., Èermak V., Burkhardt H., and Popov Y. 2004. High resolution temperature measurements in the borehole Yaxcopoil 1, Mexico. Meteoritics & Planetary Science 39: 813819.
  • Wittmann A., Kenkmann T., Schmitt R. T., Hecht L., and Stöffler D. 2004. Impact-related dike breccia lithologies in the ICDP drill core Yaxcopoil-1, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 39: 931954.
  • Wittmann A., Kenkmann T., Schmitt R. T., Hecht L., and Stöffler D. 2005. Shock metamorphism and thermal annealing of zircon in the ICDP-Chicxulub drill core Yaxcopoil-1 (abstract). Integrated Ocean Drilling Program/International Continental Drilling Program Joint Meeting. CD-ROM.
  • Zurcher L. and Kring D. A. 2004. Hydrothermal alteration in the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 39: 11991222.
  • Zurcher L., Kring D. A., Dettman D., and Rollog M. 2005a. Stable isotope record of post-impact fluid activity in the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. In Large meteorite impacts and planetary evolution III, edited by KenkmannT., HörzF., and DeutschA. GSA Special Paper #384. Boulder, Colorado: Geological Society of America. pp. 323338.
  • Zurcher L., Lounejeva-Baturina E., and Kring D. A. 2005b. Preliminary analysis of relative abundances of hydrothermal alteration products in the C1-N10, Y6-N19, and Yax-1_863.51 impact melt samples, Chicxulub structure, Mexico (abstract #1983). 36th Lunar and Planetary Science Conference. CD-ROM.