SEARCH

SEARCH BY CITATION

REFERENCES

  • Alexeev V. A. 1998. Parent bodies on L and H chondrites: Times of catastrophic events. Meteoritics & Planetary Science 33: 145152.
  • Alexeev V. A. 2005. The history of ordinary chondrites from the data on stable isotopes of noble gases (a review). Solar System Research 39: 124149.
  • Artemieva N. A. and Ivanov B. 2004. Launch of Martian meteorites in oblique impacts. Icarus 171: 84101.
  • Bastian T. 2003. Radiochemische Analyse langlebiger kosmogener Radionuklide in Marsmeteoriten und Chondriten: Wirkungquerschnitte, Produktionsraten und Modellrechnungen. Ph. D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln, Köln, Germany.
  • Beck P., Gillet Ph., El Goresy A., and Moustefaoui S. 2005. Timescales of shock processes in chondritic and Martian meteorites. Nature 435: 10711074.
  • Becker R. H. and Pepin R. O. 1984a. The case for a Martian origin of the shergottites: Nitrogen and noble gases in EETA79001. Earth and Planetary Science Letters 69: 225242.
  • Becker R. H. and Pepin R. O. 1984b. Remeasurement of nitrogen in EETA79001 glass. Meteoritics 19: 336337.
  • Becker R. H. and Pepin R. O. 1986. Nitrogen and light noble gases in Shergotty. Geochimica et Cosmochimica Acta 50: 9931000.
  • Boctor N. Z., Meyer H. O. A., and Kullerud G. 1976. Lafayette meteorite: Petrology and opaque mineralogy. Earth and Planetary Science Letters 32: 6976.
  • Bogard D. 1982. Trapped noble gases in EETA79001 shergottite. Meteoritics 17: 185186.
  • Bogard D. D. 1997. A reappraisal of the Martian 36Ar/38Ar ratio. Journal of Geophysical Research 102: 16531661.
  • Bogard D. D. and Garrison D. H. 1998. Relative abundances of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochimica et Cosmochimica Acta 62: 18291835.
  • Bogard D. D. and Garrison D. H. 1999. Argon-39-argon-40 “ages” and trapped argon in Martian shergottites, Chassigny, and Allan Hills 84001. Meteoritics & Planetary Science 34: 451473.
  • Bogard D. D. and Johnson P. 1983. Martian gases in an Antarctic meteorite? Science 221: 651654.
  • Bogard D. D., Huneke J. C., Burnett D. S., and Wasserburg G. J. 1971. Xe and Kr analyses of silicate inclusions from iron meteorites. Geochimica et Cosmochimica Acta 35: 12311254.
  • Bogard D. D., Nyquist L. E., and Johnson P. 1984. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochimica et Cosmochimica Acta 48: 17231739.
  • Bogard D. D., Hörz F., and Johnson P. 1986. Shock-implanted noble gases: An experimental study with implications for the origin of Martian gases in shergottite meteorites. Proceedings, 17th Lunar and Planetary Science Conference pp. 99114.
  • Bogard D. D., Clayton R. N., Marti K., Owen T., and Turner G. 2001. Martian volatiles: Isotopic composition, origin, and evolution. Space Science Reviews 96: 425458.
  • Clayton R. N. and Mayeda T. K. 1983. Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth and Planetary Science Letters 62: 16.
  • Deer W. A., Howie R. A., and Zusman J. 1992. An introduction to rock-forming minerals. Harlow, UK: Longman. 696 p.
  • Dreibus G., Spettel B., Haubold R., Jochum K.-P., Palme H., Wolf D., and Zipfel J. 2000. Chemistry of a new shergottite: Sayh al Uhaymir 005 (abstract). Meteoritics & Planetary Science 35: A49.
  • El Goresy A., Dubrovinsky L., Sharp T. G., and Chen M. 2004. Stishovite and post-stishovite polymorphs of silica in the shergotty meteorite: Their nature, petrographic settings versus theoretical predictions and relevance to the Earth's mantle. Journal of Physics and Chemistry of Solids 65: 15971608.
  • Eugster O. 1988. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages. Geochimica et Cosmochimica Acta 52: 16491662.
  • Eugster O. and Michel Th. 1995. Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production of noble gases in achondrites. Geochimica et Cosmochimica Acta 59: 177199.
  • Eugster O., Weigel A., and Polnau E. 1996. Two different ejection events for basaltic shergottites QUE 94201, Zagami and Shergotty (2.6 Ma ago) and lherzolithic shergottites LEW 88516 and ALH 77005 (3.5 Ma ago). Proceedings, 27th Lunar and Planetary Science Conference pp. 345346.
  • Eugster O., Weigel A., and Polnau E. 1997. Ejection times of Martian meteorites. Geochimica et Cosmochimica Acta 61: 27492757.
  • Eugster O., Busemann H., Lorenzetti S., and Terriblini D. 2002. Ejection ages from krypton-81-krypton-83 dating and preatmospheric sizes of Martian meteorites. Meteoritics & Planetary Science 37: 13451360.
  • Freundel M., Schultz L., and Reedy R. C. 1986. Terrestrial 81Kr-Kr ages of Antarctic meteorites. Geochimica et Cosmochimica Acta 50: 26632673.
  • Fritz J. 2005. Aufbruch vom Mars; Petrologie und Stosswellenmetamorphose von Marsmeteoriten. Ph.D. thesis, Humboldt-Universität zu Berlin, Berlin, Germany.
  • Fritz J., Greshake A., and Stöffler D. 2003. Launch conditions for Martian meteorites: Plagioclase as a shock pressure barometer (abstract #1335). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Fritz J., Artemieva N., and Greshake A. 2005. Ejection of Martian meteorites. Meteoritics & Planetary Science 40: 13931411.
  • Garrison D. H. and Bogard D. D. 1998. Isotopic composition of trapped and cosmogenic noble gases in several Martian meteorites. Meteoritics & Planetary Science 33: 721736.
  • Garrison D. H., Rao M. N., and Bogard D. D. 1995. Solar-proton-produced neon in shergottite meteorites and implications for their origin. Meteoritics 30: 738747.
  • Gilmour J. D., Whithby J. A., and Turner G. 2001. Disentangling xenon components in Nakhla: Martian atmosphere, spallation and Martian interior. Geochimica et Cosmochimica Acta 65: 343354.
  • Gladman B. 1997. Destination: Earth. Martian meteorite delivery. Icarus 130: 228246.
  • Gladman B. J., Burns J. A., Duncan M., Lee P., and Levison H. F. 1996. The exchange of impact ejecta between terrestrial planets. Science 271: 13871392.
  • Goodrich C. A. 2002. Olivine-phyric Martian basalts: A new type of shergottite. Meteoritics & Planetary Science 37: B31B34.
  • Grady M. M., Wright I. P., and Pillinger C. T. 1997. A carbon and nitrogen isotope study of Zagami. Journal of Geophysical Research 102: 91659173.
  • Graf T., Baur H., and Signer P. 1990. A model for the production of cosmogenic nuclides in chondrites. Geochimica et Cosmochimica Acta 54: 25212534.
  • Hale V. P. S., McSween H. Y., Jr., and McKay G. A. 1999. Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite. Geochimica et Cosmochimica Acta 63: 14591470.
  • Heymann D. 1967. On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6: 189221.
  • Hohenberg C. M., Marti K., Podosek F. A., Reedy R. C., and Shirck J. R. 1978. Comparisons between observed and predicted cosmogenic noble gases in lunar samples. Proceedings, 9th Lunar Science Conference pp. 23112344.
  • Hohenberg C. M., Hudson B., Kennedy B. M., and Podosek F. A. 1981. Xenon spallation systematics in Angra dos Reis. Geochimica et Cosmochimica Acta 45: 19091915.
  • Jochum K. P., Stoll B., Amini M., and Palme H. 2001. Limited trace element fractionation in SNC meteorites (abstract). Meteoritics & Planetary Science 36: A90A91.
  • Kim K. J., Masarik J., and Reedy R. C. 2005. The effects of geometry on nuclide production processes in meteorites (abstract). Meteoritics & Planetary Science 40: A80.
  • Krasnopolsky V. A., Bowyer S., Chakrabarti S., Gladstone G. R., and McDonald J. S. 1994. First measurement of helium on Mars: Implications for the problem of radiogenic gases on the terrestrial planets. Icarus 109: 337351.
  • Kring E. A., Gleason J. D., Swindle T. D., Nishiizumi K., Caffee M. W., Hill D. H., Jull A. J. T., and Boynton W. V. 2003. Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201. Meteoritics & Planetary Science 38: 18331848.
  • Leya I., Lange H.-J., Neumann S., Wieler R., and Michel R. 2000. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles. Meteoritics & Planetary Science 35: 259286.
  • Lodders K. 1998. A survey of shergottite, nakhlite, and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science 33: A183A190.
  • Malavergne V., Guyot F., Benzerara K., and Martinez I. 2001. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla, and Chassigny meteorites. Meteoritics & Planetary Science 36: 12971305.
  • Marti K., Kim J. S., Thakur A. N., McCoy T. J., and Keil K. 1995. Signatures of the Martian atmosphere in glass of the Zagami meteorite. Science 267: 19811984.
  • Mathew K. J. and Marti K. 2001. Early evolution on Martian volatiles: Nitrogen and noble gas components in ALH 84001 and Chassigny. Journal of Geophysical Research 106: 14011422.
  • Mathew K. J., Kim J. S., and Marti K. 1998. Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites. Meteoritics & Planetary Science 33: 655664.
  • McSween H. Y., Jr. 1984. SNC meteorites: Are they Martian rocks? Geology 12: 36.
  • McSween H. Y., Jr. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29: 757779.
  • McSween H. Y., Jr. 2002. The rocks of Mars, from far and near. Meteoritics & Planetary Science 37: 725.
  • McSween H. Y., Jr. and Stolper E. M. 1980. Basaltic meteorites. Scientific American 242: 4453.
  • Meyer C. 2003. Mars Meteorite Compendium 2001. Houston, Texas: National Aeronautics and Space Administration. 371 p.
  • Mohapatra R. K. 2004. Understanding Mars from meteorites—The nitrogen and noble gas perspective. Current Science 86: 14991505.
  • Mohapatra R. K., Mahajan R. R., and Murty S. V. S. 1998. Nitrogen and argon in Shergotty. Meteoritics & Planetary Science 33: A112.
  • Mohapatra R. K., Schwenzer S. P., and Ott U. 2003. Trapped neon in the Martian meteorite SaU 005 (abstract). Meteoritics & Planetary Science 38: A109.
  • Müller H. W. and Zähringer J. 1969. Rare gases in stony meteorites. In Meteorite research, edited by MillmanP. M., Dordrecht, The Netherlands: Kluwer pp. 845856.
  • Niedermann S. and Eugster O. 1992. Noble gases in lunar anorthositic rocks 60018 and 65315: Acquisition of terrestrial krypton and xenon indicating an irreversible adsorption process. Geochimica et Cosmochimica Acta 56: 493509.
  • Niemeyer S. and Leich D. A. 1976. Atmospheric rare gases in lunar rock 60015. Proceedings, 7th Lunar Science Conference pp. 587597.
  • Nier A. O., Hanson W. B., Seiff A., McElroy M. B., Spencer N. W., Duckett R. J., Knight T. C. D., and Cook W. S. 1976. Composition and structure of the Martian atmosphere: Preliminary results from Viking 1. Science 193: 786788.
  • Nyquist L. E., Bogard D. D., Shih C.-Y., Greshake A., Stöffler D., and Eugster O. 2001. Ages and geologic histories of Martian meteorites. Space Science Reviews 96: 105164.
  • Ocker K. D. and Gilmour J. D. 2004. Martian xenon components in Shergotty mineral separates: Locations, sources, and trapping mechanisms. Meteoritics & Planetary Science 39: 19671981.
  • Ott U. 1988. Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny. Geochimica et Cosmochimica Acta 52: 19371948.
  • Ott U. 2002. Noble gases in meteorites—Trapped components. In Noble gases in geochemistry and cosmochemistry, edited by PorcelliD., BallentineC. J., and WielerR. Washington, D.C.: Mineralogical Society of America. pp. 71100.
  • Ott U. and Begemann F. 1985. Are all “Martian” meteorites from Mars? Nature 317: 509512.
  • Ott U. and Löhr H. P. 1992. Noble gases in the new shergottite LEW 88516 (abstract). Meteoritics 27: 271.
  • Ott U., Löhr H. P., and Begemann F. 1988. New noble gas data for SNC meteorites: Zagami, Lafayette, and etched Nakhla (abstract). Meteoritics 23: 295296.
  • Ott U., Löhr H. P., and Begemann F. 1996. Etching and crushing SNCs: More noble gas data (abstract). Meteoritics & Planetary Science 31: A103.
  • Owen T., Biemann K., Rushneck D. R., Biller J. E., Howarth D. W., and Lafleur A. L. 1977. The composition of the atmosphere at the surface of Mars. Journal of Geophysical Research 82: 46354639.
  • Ozima M. and Podosek F. A. 2002. Noble gas geochemistry. Cambridge: Cambridge University Press. 286 p.
  • Park J. and Nagao K. 2006. New insights on Martian atmospheric neon from Martian meteorite, Dhofar 378 (abstract #1110). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Park J., Okazaki R., and Nagao K. 2001. Noble gases in SNC meteorites: Dar al Gani 489, Sayh al Uhaymir 005, and Dhofar 019 (abstract). Meteoritics & Planetary Science 36: A121A122.
  • Pepin R. O. 1991. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92: 279.
  • Rao M. N., Garrison D. H., Bogard D. D., and Reedy R. C. 1994. Determination of the flux and energy distribution of energetic solar protons in the past 2 Myr using lunar rock 68815. Geochimica et Cosmochimica Acta 58: 42314245.
  • Reedy R. C. 1992. Solar-proton production of neon and argon (abstract). 23rd Lunar and Planetary Science Conference pp. 11331134.
  • Rieder R., Gellert R., Anderson R. C., Brückner J., Clark B. C., Dreibus G., Economou T., Klingelhöfer G., Lugmair G. W., Ming D. W., Squyres S. W., D'Uston C., Wänke H., Yen A., and Zipfel J. 2004. Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306: 17461749.
  • Russell S. S., Zipfel J., Grossman J. N., and Grady M. M. 2002. The Meteoritical Bulletin, No. 86. Meteoritics & Planetary Science 37: A157A184.
  • Russell S. S., Zipfel J., Folco L., Jones R., Grady M. M., McCoy T., and Grossman J. N. 2003. The Meteoritical Bulletin, No. 87. Meteoritics & Planetary Science 38: A189A248.
  • Russell S. S., Folco L., Grady M. M., Zolensky M. E., Jones R., Righter K., Zipfel J. R., and Grossman J. N. 2004. The Meteoritical Bulletin, No. 88. Meteoritics & Planetary Science 39: A215A272.
  • Schultz L. and Franke L. 2004. Helium, neon, and argon in meteorites. A data collection. Meteoritics & Planetary Science 39: 18891890.
  • Schultz L., Franke L., and Bevan A. W. R. 2005. Noble gases in ten Nullarbor chondrites: Exposure ages, terrestrial ages, and weathering effects. Meteoritics & Planetary Science 40: 659664.
  • Schwenzer S. P. 2004. Marsmeteorite: Edelgase in Mineralseparaten, Gesamtgesteinen und terrestrischen Karbonaten. Ph.D. thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
  • Schwenzer S. P., Fritz J., Greshake A., Herrmann S., Jochum K. P., Ott U., Stöffler D., and Stoll B. 2004. Helium loss and shock pressure in Martian meteorites—A relationship (abstract). Meteoritics & Planetary Science 39: A96.
  • Schwenzer S. P., Herrmann S., and Ott U. 2005. Noble gases in mineral separates from Shergotty and Zagami (abstract # 1310). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Shih C.-Y., Nyquist L. E., Bogard D. D., McKay G. A., Wooden J. L., Bansal B. M., and Wiesmann H. 1982. Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005: Late magmatism on a geologically active planet. Geochimica et Cosmochimica Acta 46: 23232344.
  • Smith S. P. and Huneke J. C. 1975. Cosmogenic neon produced from sodium in meteoritic minerals. Earth and Planetary Science Letters 36: 359362.
  • Smith J. V. and Hervig R. L. 1979. Shergotty meteorite: Mineralogy, petrography, and minor elements. Meteoritics 14: 121142.
  • Srinivasan B., Lewis R. S., and Anders E. 1978. Noble gases in Allende and Abee meteorites and a gas-rich mineral fraction: Investigation by stepwise heating. Geochimica et Cosmochimica Acta 42: 183198.
  • Stauffer H. 1962. On the production of rare gas isotopes in stone meteorites. Journal of Geophysical Research 67: 20232028.
  • Steele I. M. and Smith J. V. 1982. Petrography and mineralogy of two basalts and olivine-pyroxene-spinel fragments in achondrite EETA79001. Proceedings, 13th Lunar and Planetary Science Conference. pp. A375A384.
  • Stöffler D., Ostertag R., Jammes C., Pfannschmidt G., Gupta Sen P. R., Simon S. B., Papike J. J., and Beauchamp R. H. 1986. Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta 50: 889903.
  • Stolper E. M. and McSween H. Y., Jr. 1979. Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta 43: 14751498.
  • Swindle T. D. 2002. Martian noble gases. In Noble gases in geochemistry and cosmochemistry, edited by PorcelliD., BallentineC. J., and WielerR. Washington, D.C.: Mineralogical Society of America. pp. 171190.
  • Swindle T. D., Caffee M. W., and Hohenberg C. M. 1986. Xenon and other noble gases in shergottites. Geochimica et Cosmochimica Acta 50: 10011015.
  • Terribilini D., Eugster O., Burger M., Jakob A., and Krähenbühl U. 1998. Noble gases and chemical composition of Shergotty mineral fractions, Chassigny, and Yamato-793605: The trapped argon-40/argon-36 ratio and ejection times of Martian meteorites. Meteoritics & Planetary Science 33: 677684.
  • Treiman A. H. 2005. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chemie der Erde 65: 203270.
  • Treiman A. H. and Sutton S. R. 1991. Zagami: Trace-element zoning of pyroxenes by synchrotron X-ray (SXRF) microprobe, and implications for rock genesis (abstract). 22nd Lunar and Planetary Science Conference pp. 14111412.
  • Tschermak M. G. 1872. Die Meteorite von Shergotty und Gopalpur. Sitzungsberichte der Mathematisch-naturwissenschaftlichen Classe, Akademie der Wissenschaften Wien 65: 122146.
  • Tschermak M. G. 1883. Beitrag zur Classification der Meteorite. Sitzungsberichte der Mathematisch-naturwissenschaftlichen Classe, Akademie der Wissenschaften Wien 88: 347371.
  • Wänke H. 1966. Meteoritenalter und verwandte Probleme der Kosmochemie. Fortschritte der Chemie 7: 322408.
  • Wasson J. T. and Wetherill G. W. 1979. Dynamical chemical and isotopic evidence regarding the formation locations of asteroids and meteorites. In Asteroids, edited by GehrelsT. Tucson, Arizona: The University of Arizona Press. pp. 926974.
  • Wetherill G. W. and Chapman C. R. 1988. Asteroids and meteoroids. In Meteorites and the early solar system, edited by KerridgeJ. F. and MatthewsM. S. Tucson, Arizona: The University of Arizona Press. pp. 3567.
  • Wieler R. 2002. Cosmic-ray-produced noble gases in meteorites. In Noble gases in geochemistry and cosmochemistry, edited by PorcelliD., BallentineC. J., and WielerR. Washington, D.C.: Mineralogical Society of America pp. 125170.
  • Wiens R. C. 1988. Noble gases released by vacuum crushing of EETA79001 glass. Earth and Planetary Science Letters 91: 5565.
  • Wiens R. C. and Pepin R. O. 1988. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA79001. Geochimica et Cosmochimica Acta 52: 295307.
  • Wiens R. C., Becker R. H., and Pepin R. O. 1986. The case for a Martian origin of the shergottites II. Trapped and indigenous gas components in EETA79001 glass. Earth and Planetary Science Letters 77: 149158.
  • Wood C. A. and Ashwal L. D. 1981. SNC meteorites: Igneous rocks from Mars? Proceedings, 12th Lunar and Planetary Science Conference pp. 13591375.
  • Wright I. P., Grady M. M., and Pillinger C. T. 1988. Carbon, oxygen, and nitrogen isotopic composition of possible Martian weathering products in EETA7001. Geochimica et Cosmochimica Acta 52: 917924.
  • Zipfel J., Scherer P., Spettel B., Dreibus G., and Schultz L. 2000. Petrology and chemistry of the new shergottite Dar al Gani 476. Meteoritics & Planetary Science 35: 95106.