SEARCH

SEARCH BY CITATION

REFERENCES

  • Alexander C. M. O'D. 2005. From supernovae to planets: The view from meteorites and interplanetary dust particles. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series vol. 341. pp. 9721002.
  • Alexander C. M. O'D., Russell S. S., Arden J. W., Ash R. D., Grady M. M., and Pillinger C. T. 1998. The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study. Meteoritics & Planetary Science 33: 603622.
  • Alexander C. M. O'D., Fogel M., Yabuta H., and Cody G. D. 2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et Cosmochimica Acta 71: 43804403.
  • Amari S., Lewis R. S., and Anders E. 1994. Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. Geochimica et Cosmochimica Acta 58: 459470.
  • Anders E. and Zadnik G. 1985. Unequilibrated ordinary chondrites: A tentative subclassification based on volatile-element content. Geochimica et Cosmochimica Acta 49: 12811291.
  • Ash R. D. and Pillinger C. T. 1995. Carbon, nitrogen, and hydrogen in Saharan chondrites: The importance of weathering. Meteoritics & Planetary Science 30: 8592.
  • Baratta G. A., Arena M. M., Mennella G. S. V., and Bussoletti E. 1996. Raman spectroscopy of ion irradiated amorphous carbons. Nuclear Instruments and Methods in Physical Research B 116: 195199.
  • Beyssac O., Goffé B., Chopin C., and Rouzaud J. N. 2002. Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology 20: 859871.
  • Beyssac O., Bollinger L., Avouac J.-P., and Goffé B. 2004. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters 225: 233241.
  • Bland P. A., Zolensky M. E., Benedix G. K., and Sephton M. A. 2006. Weathering of chondritic meteorites. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr., Tucson, Arizona: The University of Arizona Press. pp. 853867.
  • Bonal L., Quirico E., Bourot-Denise M., and Montagnac G. 2006a. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta 70: 18491863.
  • Bonal L., Rouzaud J.-N., and Quirico E. 2006b. Metamorphic control of noble gas abundances in pristine chondrites. (abstract #1792). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Bonal L., Bourot-Denise M., Quirico E., Montagnac G., and Lewin E. 2007. Organic matter and metamorphic history of CO chondrites. Geochimica et Cosmochimica Acta 71: 16051623.
  • Brasier M. D., Green O. R., Jephcoat A. P., Kleppe A. K., Van Kranendonk M. J., Lindsay J. F., Steele A., and Grassineau N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416: 7681.
  • Brearley A. J. 2006. The action of water. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr., Tucson, Arizona: University of Arizona Press. pp. 587624.
  • Browning L. B., McSween H. Y., Jr., and Zolensky M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 60: 26212633.
  • Brownlee D. E., Tsou P., Anderson J. D., Hanner M. S., Newburn R. L., Sekanina Z., Clark B. C., Hörz F., Zolensky M. E., Kissel J., McDonnell J. A. M., Sandford S. A., and Tuzzolino A. J. 2003. Stardust: Comet and interstellar dust sample return mission. Journal of Geophysical Research 108: SRD 11.
  • Brownlee D., Tsou P., Aléon J., Alexander C. M. O'D., Araki T., Bajt S., Baratta G. A., Bastien R., Bland P., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J. C., Browning N., Brucato J. R., Brucato H., Bullock E., Burchell M. J., Busemann H., Butterworth A., Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G., Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D'Hendecourt L., Djouadi Z., Dominguez G., Duxbury T., Dworkin J. P., Ebel D., Economou T. E., Fairey S. A. J., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet P., Gilmour J., Glavin D. P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L., Grossman J., Guan Y., Hagiya K., Harvey R., Heck P., Herzog G. F., Hoppe P., Hörz F., Huth J., Hutcheon I. D., Ishii H., Ito M., Jacob D., Jacobsen C., Jacobsen S., Joswiak D., Kearsley A. T., Keller L., Khodja H., Kilcoyne A. L. D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L., Leitner J., Lemelle L., Leroux H., Liu M.-C., Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Matrajt G., Meibom A., Mennella V., Messenger K., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., Trigo-Rodríguez J. M., Troadec D., Tsuchiyama, A. Tuzolino A. J., Tyliszczak T., Uesugi K., Velbel M., Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S., Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R. N., Zega T., Ziegler K., Zimmerman L., Zinner E., and Zolensky M. 2006. Comet 81P/Wild-2 under a microscope. Science 314: 17111716.
  • Brunetto R., Baratta G. A., and Strazzulla G. 2004. Raman spectroscopy of ion irradiated diamond. Journal of Applied Physics 96: 380386.
  • Busemann H., Baur H., and Wieler R. 2000. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteoritics & Planetary Science 35: 949973.
  • Busemann H., Young A. F., Alexander C. M. O'D., Hoppe P., Mukhopadhyay S., and Nittler L. R. 2006. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312: 727730.
  • Cain P. M., McSween H. Y., Jr., and Woodward N. B. 1986. Structural deformation of the Leoville chondrite. Earth and Planetary Science Letters 77: 165175.
  • Chizmadia L. J., Rubin A. E., and Wasson J. T. 2002. Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent-body aqueous alteration. Meteoritics & Planetary Science 37: 17811796.
  • Michel-Levy Christophe M. and Lautie A. 1981. Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite. Nature 292: 321322.
  • Cody G. D. and Alexander C. M. O'D. 2005. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et Cosmochimica Acta 69: 10851097.
  • Cody G. D., Alexander C. M. O'D., and Tera F. 2002. Solid-state (1H and 13C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: A self-consistent quantitative analysis. Geochimica et Cosmochimica Acta 66: 18511865.
  • Cody G. D., Alexander C. M. O'D., Yabuta H., Araki T., and Kilcoyne A. L. D. 2006. Complexity in the early solar system as recorded in meteoritic organic matter (abstract #1795). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Court R. W., Sephton M. A., Parnell J., and Gilmour I. 2006. The alteration of organic matter in response to ionising irradiation: Chemical trends and implications for extraterrestrial sample analysis. Geochimica et Cosmochimica Acta 70: 10201039.
  • Dartois E., Muñoz Caro G. M., Deboffle D., Montagnac G., and D'Hendecourt L. 2005. Ultraviolet photoproduction of ISM dust. Laboratory characterisation and astrophysical relevance. Astronomy and Astrophysics 432: 895908.
  • Djouadi Z., Matrajt G., Raynal P. I., Borg J., and D'Hendecourt L. 2003. FTIR and Raman analyses of the carbon in Tagish Lake meteorite (abstract #5075). Meteoritics & Planetary Science 38: A45.
  • El Amri C., Maurel M.-C., Sagon G., and Baron M.-H. 2005. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging. Spectrochimica Acta A 61: 20492056.
  • Everall N. J., Lumsdon J., and Christopher D. J. 1991. The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon 29: 133137.
  • Ferini G., Baratta G. A., and Palumbo M. E. 2004. A Raman study of ion irradiated icy mixtures. Astronomy and Astrophysics 414: 757766.
  • Ferrari A. C. and Robertson J. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61: 14,09514,107.
  • Ferrari A. C. and Robertson J. 2001. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64, doi: 10.1103/PhysRevB.64.075414.
  • Flynn G. J., Keller L. P., Feser M., Wirick S., and Jacobsen C. 2003. The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta 67: 47914806.
  • Geiss J. and Reeves H. 1981. Deuterium in the solar system. Astronomy and Astrophysics 93: 189199.
  • Gilmour I. 2003. Structural and isotopic analysis of organic matter in carbonaceous chondrites. In Meteorites, comets, and planets, edited by Davies A. M. Treatise on Geochemistry, vol. 1. Amsterdam: Elsevier. pp. 269280.
  • Greenwood R. C. and Franchi I. A. 2004. Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes. Meteoritics & Planetary Science 39: 18231838.
  • Greshake A., Krot A. N., and Keil K. 2004. Mineralogy and chemistry of fine-grained matrices, rims, and dark inclusions in the CR carbonaceous chondrites Acfer/El Djouf 001 and the ungrouped carbonaceous chondrites Acfer 094 and Adelaide (abstract #9041). Workshop on Chondrites and the Protoplanetary Disk.
  • Grossman J. N. and Rubin A. E. 2006. Dominion Range 03238: A possible missing link in the metamorphic sequence of CO3 chondrites. (abstract #1383). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Guimon R. K., Symes S. J. K., Sears D. W. G., and Benoit P. H. 1995. Chemical and physical studies of type 3 chondrites. XII: The metamorphic history of CV chondrites and their components. Meteoritics 30: 704714.
  • Heymann D. and Read N. 1987. Gas release and ordering of carbon in the Allende meteorite. Meteoritics 22: 229235.
  • Huss G. R. 1990. Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature 347: 159162.
  • Huss G. R. and Lewis R. S. 1994. Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins. Meteoritics 29: 791810.
  • Huss G. R. and Lewis R. S. 1995. Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta 59: 115160.
  • Huss G. R., Lewis R. S., and Hemkin S. 1996. The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history. Geochimica et Cosmochimica Acta 60: 33113340.
  • Huss G. R., Meshik A. P., Smith J. B., and Hohenberg C. M. 2003. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta 67: 48234848.
  • Huss G. R., Alexander C. M. O'D., Palme H., Bland P. A., and Wasson J. T. 2005. Genetic relationships between chondrules, fine-grained rims, and interchondrule matrix. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series, vol. 341. pp. 701731.
  • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 567586.
  • Jones R. H. and Rubie D. C. 1991. Thermal histories of CO3 chondrites: Application of olivine diffusion modelling to parent body metamorphism. Earth and Planetary Science Letters 106: 7386.
  • Kagi H., Tsuchida I., Wakatsuki M., Takahashi K., Kamimura N., Iuchi K., and Wada H. 1994. Proper understanding of downshifted Raman spectra of natural graphite: Direct estimation of laser-induced rise in sample temperature. Geochimica et Cosmochimica Acta 58: 35273530.
  • Keck B. D. and Sears D. W. G. 1987. Chemical and physical studies of type 3 chondrites—VIII: Thermoluminescence and metamorphism in the CO chondrites. Geochimica et Cosmochimica Acta 51: 30133021.
  • Keller L. P., Flynn S. M. G. J., Clemett S., Wirick S., and Jacobsen C. 2004. The nature of molecular cloud material in interplanetary dust. Geochimica et Cosmochimica Acta 68: 25772589.
  • Krot A. N., Petaev M. I., and Bland P. A. 2004. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism. Antarctic Meteorite Research 17: 153171.
  • Kunihiro T., Rubin A. E., and Wasson J. T. 2005. Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochimica et Cosmochimica Acta 69: 38313840.
  • Lewis R. S., Srinivasan B., and Anders E. 1975. Host phase of a strange xenon component in Allende. Science 190: 12511262.
  • Lipschutz M. E., Zolensky M. E., and Bell M. S. 1999. New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites. Antarctic Meteorite Research 12: 5780.
  • Makjanic J., Vis R. D., Hovenier J. W., and Heymann D. 1993. Carbon in the matrices of ordinary chondrites. Meteoritics 28: 6370.
  • Marrocchi Y., Derenne S., Marty B., and Robert F. 2005. Interlayer trapping of noble gases in insoluble organic matter of primitive meteorites. Earth and Planetary Science Letters 236: 569578.
  • Matrajt G., Borg J., Raynal P. I., Djouadi Z., D'Hendecourt L., Flynn G., and Deboffle D. 2004. FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the diffuse interstellar medium. Astronomy and Astrophysics 416: 983990.
  • McSween H. Y., Jr. 1977. Carbonaceous chondrites of the Ornans type: A metamorphic sequence. Geochimica et Cosmochimica Acta 41: 477491.
  • Messenger S. 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature 404: 968971.
  • Mostefaoui S., Perron C., Zinner E., and Sagon G. 2000. Metal-associated carbon in primitive chondrites: Structure, isotopic composition, and origin. Geochimica et Cosmochimica Acta 64: 19451964.
  • Muñoz Caro G. and Martínez-Frías J. 2006. Carbonaceous dust in planetary systems: Origin and astrobiological significance. Proceedings, Workshop on Dust in Planetary Systems. pp. 133140.
  • Muñoz Caro G. M., Matrajt G., Dartois E., Nuevo M., D'Hendecourt L., Deboffle D., Montagnac G., Chauvin N., Boukari C., and Le Du D. 2006. Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: Effects of irradiation and identification with a type of amorphous carbon. Astronomy and Astrophysics 459: 147159.
  • Nakamura K., Zolensky M. E., Tomita S., Nakashima S., and Tomeoka K. 2002. Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions. International Journal of Astrobiology 1: 179189.
  • Nakamura-Messenger K., Messenger S., Keller L. P., Clemett S. J., and Zolensky M. E. 2007. Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314: 14391442.
  • Naraoka H., Mita H., Komiya M., Yoneda S., Kojima H., and Shimoyama A. 2004. A chemical sequence of macromolecular organic matter in the CM chondrites. Meteoritics & Planetary Science 39: 401406.
  • Nasdala L., Smith D. C., Kaindl R., and Ziemann M. A. 2004. Raman spectroscopy: Analytical perspectives in mineralogical research. In Spectroscopic methods in mineralogy, edited by Beran A. and Libowitzky E. EMU Notes in Mineralogy, vol. 4. Budapest: Eötvös University Press. pp. 281343.
  • Nittler L. R., Busemann H., and Hoppe P. 2006. Isotopic and micro-Raman investigation of interplanetary dust particles collected during 2003 Earth passage through comet Grigg-Skjellerup dust stream (abstract #2301). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Noguchi T., Ishikawa K.-I., and Ninagawa K. 1999. Effects of terrestrial weathering on the matrix mineralogy of Colony CO3 chondrite. Antarctic Meteorite Research 12: 3656.
  • Ott U., Mack R., and Chang S. 1981. Noble-gas-rich separates from the Allende meteorite. Geochimica et Cosmochimica Acta 45: 17511788.
  • Pasteris J. D. and Wopenka B. 1991. Raman spectra of graphite as indicators of degree of metamorphism. Canadian Mineralogist 29: 19.
  • Pasteris J. D. and Wopenka B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3: 727738.
  • Pearson V. K., Sephton M. A., Kearsley A. T., Bland P. A., Franchi I. A., and Gilmour I. 2002. Clay mineral-organic matter relationships in the early solar system. Meteoritics & Planetary Science 37: 18291833.
  • Pearson V. K., Sephton M. A., and Gilmour I. 2006. Molecular and isotopic indicators of alteration in CR chondrites. Meteoritics & Planetary Science 41: 12911303.
  • Pizzarello S., Cooper G. W., and Flynn G. J. 2006. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 625651.
  • Quirico E., Raynal P.-I., and Buorot-Denise M. 2003. Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteoritics & Planetary Science 38: 795811.
  • Quirico E., Rouzaud J.-N., Bonal L., and Montagnac G. 2005a. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectrochimica Acta A 61: 23682377.
  • Quirico E., Borg J., Raynal P.-I., Montagnac G., and D'Hendecourt L. 2005b. A microRaman survey of 10 IDPs and 6 carbonaceous chondrites. Planetary and Space Science 53: 14431448.
  • Raynal P.-I. 2003. Étude en laboratoire de matière extraterrestre: implications pour la physico-chimie du Système Solaire primitif. Ph.D. thesis, Université de Paris 6, Paris, France.
  • Remusat L., Palhol F., Robert F., Derenne S., and France-Lanord C. 2006. Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin? Earth and Planetary Science Letters 243: 1525.
  • Robert F. 2003. The D/H in chondrites. Space Science Reviews 106: 87101.
  • Rotundi A., Ferrini G., Baratta G. A., Palumbo M. E., Palomba E., and Colangeli L. 2006. Combined micro-infrared (IR) and microRaman measurements on stratospheric interplanetary dust particles. Proceedings, Workshop on Dust in Planetary Systems. pp. 149156.
  • Rotundi A., Baratta G. A., Borg J., Brucato J. R., Busemann H., Colangeli L., D'Hendecourt L., Djouadi Z., Ferrini G., Franchi I. A., Fries M., Grossemy F., Keller L. P., Mennella V., Nakamura K., Nittler L. R., Palumbo M. E., Sandford S., Steele A., and Wopenka B. Forthcoming. Combined microRaman, micro-infrared, and field emission scanning electron microscope analyses of comet 81P/Wild-2 particles collected by Stardust. Meteoritics & Planetary Science.
  • Rubin A. E., Fegley B., and Brett R. 1988. Oxidation state in chondrites. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 488511.
  • Rubin A. E., Trigo-Rodríguez J. M., Huber H., and Wasson J. T. 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71: 23612382.
  • Sandford S. A., Bernstein M. P., and Dworkin J. P. 2001. Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteoritics & Planetary Science 36: 11171133.
  • Sandford S. A., Aléon J., Alexander C. M. O'D., Araki T., Bajt S., Baratta G. A., Borg J., Bradley J. P., Brownlee D. E., Brucato J. R., Burchell M. J., Busemann H., Butterworth A., Clemett S. J., Cody G., Colangeli L., Cooper G., D'Hendecourt L., Djouadi Z., Dworkin J. P., Ferrini G., Fleckenstein H., Flynn G., Fries M., Gilles M. K., Glavin D. P., Gounelle M., Grossemy F., Jacobsen C., Kilcoyne D., Leitner J., Matrajt G., Meibom A., Mennella V., Mostefaoui S., Nittler L. R., Palumbo M. E., Robert F., Rotundi A., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Tsou P., Tyliszczak T., Westphal A. J., Wirick S., Wopenka B., Yabuta H., Zare R. N., and Zolensky M. E. 2006. Organics captured from comet Wild-2 by the Stardust spacecraft. Science 314: 17201724.
  • Satterwhite C. and Righter K. 1998. Antarctic Meteorite Newsletter 21(2).
  • Satterwhite C. and Righter K. 2003. Antarctic Meteorite Newsletter 26(2).
  • Schopf J. W., Kudryavtsev A. B., Agresti D. G., Wdowiak T. J., and Czaja A. D. 2002. Laser-Raman imagery of Earth's earliest fossils. Nature 416: 7376.
  • Schopf J. W., Kudryavtsev A. B., Agresti D. G., Czaja A. D., and Wdowiak T. J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils. Astrobiology 5: 333371.
  • Scott E. R. D. and Jones R. H. 1990. Disentangling nebular and asteroidal features of CO3 carbonaceous chondrite meteorites. Geochimica et Cosmochimica Acta 54: 24852502.
  • Scott E. R. D. and Krot A. N. 2005. Chondritic meteorites and the high-temperature nebular origins of their components. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series, vol. 341. pp. 1553.
  • Sears D. W., Grossman J. N., Melcher C. L., Ross L. M., and Mills A. A. 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287: 791795.
  • Sears D. W. G., Batchelor J. D., Lu J., and Keck B. D. 1991. Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 4: 319343.
  • Sephton M. A. 2002. Organic compounds in carbonaceous chondrites. Natural Products Report 19: 292311.
  • Sephton M. A., Pillinger C. T., and Gilmour I. 2000. Aromatic moieties in meteoritic macromolecular materials: Analyses by hydrous pyrolysis and δ13C of individual compounds. Geochimica et Cosmochimica Acta 64: 321328.
  • Strazzulla G., Baratta G. A., and Palumbo M. E. 2001. Vibrational spectroscopy of ion-irradiated ices. Spectrochimica Acta A 57: 825842.
  • Tuinstra F. and Koenig J. L. 1970. Raman spectrum of graphite. Journal of Chemical Physics 53: 11261130.
  • Wang A., Kuebler K. E., Jolliff B. L., and Haskin L. A. 2003. Fe-Ti-Cr-oxides in Martian meteorite EETA79001 studied by point-counting procedure using Raman spectroscopy (abstract #1742). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Weisberg M. K., McCoy T. J., and Krot A. N. 2006. Systematics and evaluation of meteorite classification. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 1952.
  • Wieler R., Busemann H., and Franchi I. A. 2006. Trapping and modification processes of noble gases and nitrogen in meteorites and their parent bodies. In Meteorites and the early solar system II, edited by Lauretta D. S., Leshin L. A., and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 499521.
  • Wopenka B. 1988. Raman observations of individual interplanetary dust particles. Earth and Planetary Science Letters 88: 221231.
  • Wopenka B. and Pasteris J. D. 1993. Structural characterization of kerogens to granulite-facies graphite. Applicability of Raman microprobe spectroscopy. American Mineralogist 78: 533557.
  • Zinner E., Amari S., Wopenka B., and Lewis R. S. 1995. Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains in Murchison. Meteoritics 30: 209226.
  • Zolensky M. E., Mittlefehldt D. W., Lipschutz M. E., Wang M.-S., Clayton R. N., Mayeda T. K., Grady M. M., Pillinger C., and Barber D. 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta 61: 50995115.