SEARCH

SEARCH BY CITATION

REFERENCES

  • Artemieva N. A. and Shuvalov V. V. 2002. Shock metamorphism on the ocean floor (numerical simulations). Deep Sea Research II 4: 959968.
  • Boureois J., Hansen T. A., Wiberg P. L., and Kauffman E. G. 1988. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science 241: 567570.
  • Cai X., Acklam E., Langtangen H. P., and Tveito A. 2003. Parallel computing in Diffpack. In Advanced topics in computational partial differential equations—Numerical methods and Diffpack programming, edited by LangtangenH. P. and TveitoA. Berlin: Springer. pp. 156.
  • Clarisse J.-M., Newman J. N., and Ursell F. 1995. Integrals with a large parameter: Water waves on finite depth due to an impulse. Proceedings of the Royal Society A 450: 6787.
  • Clamond D. and Grue J. 2001. A fast method for fully nonlinear water wave computations. Journal of Fluid Mechanics 447: 337355.
  • Crawford D. A. and Mader C. L. 1998. Modeling asteroid impact and tsunami. Science of Tsunami Hazards 16: 2130.
  • Dold J. W. 1992. An efficient surface-integral algorithm applied to unsteady gravity waves. Journal of Computational Physics 103: 90115.
  • Dypvik H., Gudlaugsson S. T., Tsikalas F., Attrep M., Jr., Ferrell R. E., Jr., Krinsley D. H., Mørk A., Faleide J. I., and Nagy J. 1996. Mjølnir structure: An impact crater in the Barents Sea. Geology 24: 779782.
  • Dypvik H. and Jansa L. 2003. Sedimentary signatures and processes during marine bolide impacts: A review. Sedimentary Geology 161: 308341.
  • Dypvik H., Burchell M., and Claeys P. 2004a. Impacts into marine and icy environments—A short review. In Cratering in marine environments and on ice, edited by DypvikH., BurchellM., and ClaeysP. Heidelberg: Springer-Verlag. pp. 120.
  • Dypvik H., Sandbakken P. T., Postma G., and Mørk A. 2004b. Postimpact sedimentation in the Mjølnir crater. Sedimentary Geology 168: 227247.
  • Dypvik H., Wolbach W. S., Shuvalov V., and Weaver S. L. W. Forthcoming. Did the Mjølnir asteroid impact ignite Barents Sea hydrocarbon source rocks Geological Society of America.
  • Fructus D., Clamond D., Grue J., and Kristiansen Ø. 2005. An efficient model for three-dimensional surface wave simulations: Part I: Free space problems. Journal of Computational Physics 205: 665685.
  • Gault D. E. and Sonett C. P. 1982. Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography, and the surface wave radiation field. In Geological implications of impacts of large asteroids and comets on the Earth, edited by SilverL. T. and SchultzP. H. GSA Special Paper #190. Boulder, Colorado: Geological Society of America. pp. 6992.
  • Gersonde R., Deutsch A., Ivanov B. A., and Kyte F. T. 2002. Oceanic impacts—A growing field of fundamental science. Deep Sea Research II 49: 951957.
  • Gisler G., Weaver R., Mader C., and Gittings M. 2003. Two- and three-dimensional simulations of asteroid ocean impacts. Science of Tsunami Hazards 21: 119134.
  • Gisler G. R., Weaver R. P., Mader C. L., and Gittings M. L. 2004. Two- and three-dimensional asteroid impact simulations. Computing in Science and Engineering 6: 4655.
  • Grieve R. A. F., James R., Smit J., and Terriault A. 1995. The record of terrestrial impact cratering. GSA Today 5: 193196.
  • Grue J. 2002. On four highly nonlinear phenomena in wave theory and marine hydrodynamics. Applied Ocean Research 24: 261274.
  • Gudlaugsson S. T. 1993. Large impact crater in the Barents Sea. Geology 21: 291294.
  • Kataoka T. and Tsutahara M. 2004. Transverse instability of surface solitary waves. Journal of Fluid Mechanics 512: 211221.
  • Kennedy A. B., Chen Q., Kirby J. T., and Dalrymple R. A. 2000. Boussinesq modeling of wave transformation, breaking, and runup. Part I: 1D. Journal of Waterwaves, Port, Coastal, and Ocean Engineering 126: 3947.
  • Ko K. and Kuehl H. H. 1978. Korteweg-de Vries soliton in a slowly varying medium. Physical Review Letters 40: 233236.
  • Korycansky D. G. and Lynett P. J. 2005. Offshore breaking of impact tsunami: The Van Dorn effect revisited. Geophysical Research Letters 32, doi: 10.1029/2004GL021918.
  • Kulikovskii A. G. and Reutov V. A. 1976. Movement of solitary and periodic waves with an amplitude close to the limiting in a liquid layer of slowly varying depth. Fluid Dynamics 11: 884893.
  • Kyte F., Zhou Z., and Wasson J. T. 1981. High noble metal concentrations in a late Pliocene sediment. Nature 292: 417420.
  • Langtangen H. P. and Pedersen G. 1998. Computational models for weakly dispersive nonlinear water waves. Computer Methods in Applied Mechanics and Engineering 160: 337358.
  • Lynett P. J., Wu T.-R., and Liu P. L.-F. 2002. Modeling wave run-up with depth-integrated equations. Coastal Engineering 46: 89107.
  • Mei C. C. 1989. The applied dynamics of ocean surface waves. London: World Scientific. 740 p.
  • Miles J. W. 1977. Diffraction of solitary waves. Journal of Applied Mathematics and Physics 28: 889902.
  • Miles J. W. 1980. Solitary waves. Annual Review of Fluid Mechanics 12: 1143.
  • Pedersen G. 1994. Nonlinear modulations of solitary waves. Journal of Fluid Mechanics 267: 83108.
  • Pedersen G. 1996. Refraction of solitons and wave jumps. In Waves and nonlinear processes in hydrodynamics, edited by GjevikB., GrueJ., and WeberJ. E. Dordrecht, The Netherlands: Kluwer Academic Publishers. pp. 139150.
  • Pedersen G. 2005. Variable depth and the validity of Boussinesq-type models. Preprint Series in Mechanics and Applied Mathematics, vol. 2005, no. 2. Oslo, Norway: Department of Mathematics, University of Oslo, Norway.
  • Peregrine D. H. 1966. Calculations of the development of an undular bore. Journal of Fluid Mechanics 25: 321330.
  • Peregrine D. H. 1976. Interaction of water waves and currents. Advances in Applied Mechanics 16: 10117.
  • Reutov V. A. 1976. Behaviour of perturbations of solitary and periodic waves on the surface of a heavy liquid. Fluid Dynamics 11: 778781.
  • Russel J. S. 1845. Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845). pp. 311390, plates XLVII-LVI.
  • Shuvalov V. V., Artemieva N. A., and Kosarev I. B. 1999. 3-D hydrodynamic code SOVA for multimaterial flows, application to Shoemaker Levy 9 comet impact problem. International Journal of Impact Engineering 23: 847858.
  • Shuvalov V. V., Dypvik H., and Tsikalas F. 2002. Numerical simulations of the Mjølnir marine impact crater. Journal of Geophysical Research 107, doi:10.1029/2001JE001698.
  • Shuvalov V. V. 2003. Numerical modeling of the Eltanin impact (abstract #1101). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Shuvalov V. and Dypvik H. 2004. Ejecta formation and crater development of the Mjølnir impact. Meteoritics & Planetary Science 39: 467479.
  • Smelror M., Kelly R. A., Dypvik H., Mørk A., Nagy J., and Tsikalas F. 2001. Mjølnir (Barents Sea) meteorite impact ejecta offers a Volgian-Ryazanian boundary marker. Newsletter on Stratigraphy 38: 129140.
  • Smelror M. and Dypvik H. 2005. The sweet aftermath: Environmental changes and biotic restoration following the marine Mjølnir impact (Volgian-Ryazanian boundary, Barents shelf). In Biological processes associated with impact events, edited by CockellC. S., KoeberlC., and GilmourI. Berlin: Springer. pp. 144175.
  • Smit J., Roep T. B., Alvarez W., Montanari A., Claeys P., Grajales-Nishimura J. M., and Bermudez J. 1996. Clastic sandstone complex at the K/T boundary around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact? GSA Special Paper #307. Boulder, Colorado: Geological Society of America. pp. 151182.
  • Synolakis C. E. and Skjelbreia J. E. 1993. Evolution of maximum amplitude of solitary waves on plane beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering 119: 323342.
  • Tanaka M. 1986. The stability of solitary waves. Physics of Fluids 29: 650655.
  • Tsikalas F., Gudlaugsson S. T., and Faleide J. I. 1998. The anatomy of a buried complex impact structure: The Mjølnir structure. Journal of Geophysical Research 103: 30, 46930, 484.
  • Tsikalas F. 2004. Mjølnir crater as a result of an oblique impact: Asymmetry evidence constrains impact direction and angle. In Impact studies (impact tectonism), edited by HenkelH. and KoeberlC. Berlin-Heidelberg: Springer. pp. 285306.
  • USGS. (U.S. Geological Survey). http:www.usgs.gov. Accessed 11 May 2006.
  • Van Dorn W. G., Le Méhauté B., and Hwang L.-S. 1968. Handbook of explosion-generated water waves. Report #TC-130, Tetra Tech Inc., Pasadena, California.
  • Ward S. N. and Asphaug E. 2000. Asteroid impact tsunami: A probabilistic hazard assessment. Icarus 145: 6478.
  • Ward S. N. and Asphaug E. 2002. Impact tsunami—Eltanin. Deep Sea Research II 49: 10731080.
  • Weiss R., Wünnemann K., and Bahlburg H. 2003. Oceanic impacts, tsunamis, and the influence of the water depth on the quantity and characteristics of the generated waves (abstract #4081). Third International Conference on Large Meteorite Impacts. CD-ROM.
  • Weiss R., Wünnemann K., and Bahlburg H. 2006. Numerical modeling of generation, propagation, and run-up of tsunamis cause by oceanic impacts: Model strategy and technical solutions. Geophysical Journal International 167: 7788.
  • Wolbach W. S., Widicus S., and Dypvik H. 2001. A preliminary search for evidence of impact-related burning near the Mjølnir impact structure, Barents Sea (abstract #1332). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Zelt J. A. 1991. The run-up of nonbreaking and breaking solitary waves. Coastal Engineering 15: 205246.