SEARCH

SEARCH BY CITATION

REFERENCES

  • Abramov O. and Kring D. A. 2005. Impact-induced hydrothermal activity on early Mars. Journal of Geophysical Research 110(E12), doi:10.1029/2005JE002453.
  • Arakawa M. and Maeno N. 1997. Mechanical strength of polycrystalline ice under uniaxial compression. Cold Regions Science and Technology 26: 215229.
  • Barlow N. G. 2005. A review of Martian impact crater ejecta structures and their implications for target properties. GSA Special Paper 384. Boulder: Geological Society of America. pp. 433442.
  • Barlow N. G. 2006. Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics. Meteoritics & Planetary Science 41: 14251436.
  • Barlow N. G., Boyce J. M., Costard F. M., Craddock R. A., Garvin J. B., Sakimoto S. E. H., Kuzmin R. O., Roddy D. J., and Soderblom L. A. 2000. Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research 105(E11): 26,733-26,738.
  • Barlow N. G. and Bradley T. L. 1990. Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87: 156179.
  • Barlow N. G. and Perez C. B. 2003. Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. Journal of Geophysical Research 108(E8), doi: 10.1029/2002JE002036.
  • Barnouin-Jha O. S. and Buczkowski D. L. 2007. Comparing the runout of fluidized ejecta on Mars with mass movements on Earth (abstract #1304). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Barnouin-Jha O. S. and Shultz P. H. 1998. Lobateness of impact ejecta deposits from atmospheric interactions. Journal of Geophysical Research 103(E11): 25,739-25,756.
  • Barnouin-Jha O. S. and Shultz P. H. 1999. Interaction between an impact generated ejecta curtain and an atmosphere. Journal of Impact Engineering 23: 5162.
  • Beeman M., Durham W. B., and Kirby S. H. 1988. Friction of ice. Journal of Geophysical Research 93(B7): 76257633.
  • Belton M. J., Thomas P., Veverka J., Schultz P., A'Hearn M. F., Feaga L., Farnham T., Groussin O., Li J., Lisse C., McFadden L., Sunshine J., Meech K., Delamere W. A., and Kissel J. 2007. The internal structure of Jupiter family cometary nuclei from deep impact observations: The talps or “layered pile” model. Icarus 187: 332344.
  • Beyer R. A. and McEwen A. S. 2005. Layering stratigraphy of eastern Coprates and northern Capri Chasmata, Mars. Icarus 179: 123.
  • Bibring J., Langevin Y., Mustard J. F., Poulet F., Arvidson R., Gendrin A., Gondet B., Mangold N., Pinet P., Forget F., and O. Team 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312: 400404.
  • Black B. A. and Stewart S. T. 2008. Impact crater geometries provide evidence for ice-rich layers at low latitudes on Mars. Journal of Geophysical Research 113(E02015), doi:10.1029/2007JE002888.
  • Boteler J. M. and Sutherland G. T. 2004. Tensile failure of water due to shock wave interactions. Journal of Applied Physics 96: 69196924.
  • BottkeW. F., NolanM. C., GreenbergR., and KolvoordR. A. 1994. Collisional lifetimes and impact statistics of near-earth asteroids, in Hazards due to comets and asteroids, edited by GehrelsT. Tucson: The University of Arizona Press. pp. 337357.
  • Boyce J. M. and Garbeil H. 2007. Geometric relationships of pristine Martian complex impact craters, and their implications to Mars geologic history. Geophysical Research Letters 34: doi: 10.1029/2007GL029731.
  • Boyce J. M., Mouginis-Mark P., and Garbeil H. 2004. Predicted effects of surface processes on Martian impact crater depth/diameter relationships (abstract #2301). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Boyce J. M., Mouginis-Mark P., and Garbeil H. 2005. Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships. Journal of Geophysical Research 110(E3008), doi: 1029/2004JE002328.
  • Boyce J. M., Mouginis-Mark P., and Garbeil H. 2006. Deep impact craters in the Isidis and southwestern Utopia Planitia regions of Mars: High target material strength as a possible cause, Geophysical Research Letters 33: doi: 10.1029/2005GL024462.
  • Boyce J. M. and Mouginis-Mark P. J. 2006. Martian craters viewed by the Thermal Emission Imaging System instrument: double-layered ejecta craters. Journal of Geophysical Research 111 (E10), doi: 10.1029/2005JE002638.
  • Boynton W. V., Feldman W. C., Squyres S. W., Prettyman T. H., Bruckner J., Evans L. G., Reedy R. C., Starr R., Arnold J. R., Drake D. M., Englert P. A. J., Metzger A. E., Mitrofanov I., Trombka J. I., D'Uston C., Wänke H., Gasnault O., Hamara D. K., Janes D. M., Marcialis R. L., Maurice S., Mikheeva I., Taylor G. J., Tokar R., and Shinohara C. 2002. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297: 8185.
  • Bray V. J., Collins G. S., Morgan J. V., and Schenk P. M. 2008. The effect of target properties on crater morphology: Comparison of central peak craters on the Moon and Ganymede. Meteoritics & Planetary Science 43. This issue.
  • Byerlee J. 1978. Friction of rocks. Pure and Applied Geophysics 116: 615626.
  • Cabrol N. A. and Grin E. A. 1999. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142: 160172.
  • Carr M. H., Crumpler L. S., Cutts J. A., Greeley R., Guest J. E., and Masursky H. 1977. Martian impact craters and emplacement of ejecta by surface flow. Journal of Geophysical Research 82: 40554065.
  • Clifford S. M. 1993. A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research 98(E6): 10,973-11,016.
  • Clifford S. M. and D. Hillel 1983. The stability of ground ice in the equatorial region of Mars. Journal of Geophysical Research 88(NB3): 24562474.
  • Cohn S. N. and Ahrens T. J. 1981. Dynamic tensile strength of lunar rock types. Journal of Geophysical Research 86(B3): 17941802.
  • Collins G. 2002. Numerical modeling of large impact crater collapse, Ph.D. thesis, University of London. 235 p.
  • Collins G. S., Melosh H. J., and Ivanov B. A. 2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science 39: 217231.
  • Collins G. S. and Wünnemann K. 2005. How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33: 925928.
  • Craddock R. A., Maxwell T. A., and Howard A. D. 1997. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. Journal of Geophysical Research 102(E6): 13,321-13,340.
  • Crawford D. 1999. Adaptive mesh refinement in CTH. Paper presented at 15th U.S. Army Symposium on Solid Mechanics, U.S. Army, Myrtle Beach, SC, April 12-14.
  • Croft S. K., Kieffer S. W., and Ahrens T. J. 1979. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages. Journal of Geophysical Research 84(B14): 80238032.
  • Durham W. B., Pathare A. V., and Stern L. A. 2008. The brittle-to-ductile transition of icy materials on Mars (abstract #2315). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Edgett K. S. and Malin M. C. 2002. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophysical Research Letters 29: 21792182.
  • FanaleF. P., PostawkoS. E., PollackJ. B., CarrM. H., and PepinR. O. 1992. Mars: Epochal climate change and volatile history. In Mars, edited by KiefferH. H., JakoskyB. M., SnyderC. W., MatthewsM. S. Tucson: The University of Arizona Press. pp. 11351179.
  • Feistel R. and Wagner W. 2006. A new equation of state for H2O ice Ih. Journal of Physical and Chemical Reference Data 35: 10211047.
  • Feldman W. C., Boynton W. V., Tokar R. L., Prettyman T. H., Gasnault O., Squyres S. W., Elphic R. C., Lawrence D. J., Lawson S. L., Maurice S., McKinney G. W., Moore K. R., and Reedy R. C. 2002. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297: 7578.
  • Forget F., Haberle R. M., Montmessin F., Levrard B., and Heads J. W. 2006. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311: 368371.
  • Forsberg-Taylor N. K., Howard A. D., and Craddock R. A. 2004. Crater degradation in the Martian highlands: Morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. Journal of Geophysical Research 109(E05002), doi: 10.1029/2004JE002242.
  • Frank M. R., Fei Y., and Hu J. 2004. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of Ice VII. Geochimica et Cosmochimica Acta 68: 27812790.
  • Gault D. E. and Greeley R. 1978. Exploratory experiments of impact craters formed in viscous-liquid targets: Analogs for Martian rampart craters? Icarus 34: 486495.
  • Gault D. E., Quaide W. L., Oberbeck V. R., and Moore H. J. 1966. Luna 9 photographs: Evidence for a fragmental surface layer. Science 153: 985988.
  • Griffith A. A. 1920. The phenomena or rupture and flow in solids, Philosophical Transactions of the Royal Society of London A 34: 137154.
  • Head J. N., Melosh H. J., and Ivanov B. A. 2002. Martian meteorite launch: High-speed ejecta from small craters. Science 298: 17521756.
  • Head J. W., Marchant D. R., Agnew M. C., Fassett C. I., and Kreslavsky M. A. 2006. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters 241: 663671.
  • Head J. W., Mustard J. F., Kreslavsky M. A., Milliken R. E., and Marchant D. R. 2003. Recent ice ages on Mars. Nature 426: 797802.
  • Head J. W., Neukum G., Jaumann R., Hiesinger H., Hauber E., Carr M., Masson P., Foing B., Hoffmann H., Kreslavsky M., Werner S., Milkovich S., and Gasselt van S. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434: 346351.
  • Herrmann W. 1969. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics 40: 24902499.
  • Hertel E. S., Jr. and Kerley G. 1998. CTH reference manual: The equation of state package. Report SAND98-0947, Sandia National Laboratories, Albuquerque, NM.
  • Hiraoka K., Arakawa M., and Nakamura A. M. 2006. Measurement of compressive and tensile strength of ice-silicate mixtures (abstract #1602). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Holian K. S. 1984. T-4 handbook of material properties data bases, vol. 1c: Equations of state. Report LA-10160-MS, Los Alamos National Laboratory, Los Alamos, NM. 382 p.
  • Housen K. R. and Holsapple K. A. 1990. On the fragmentation of asteroids and planetary satellites. Icarus 84: 226253.
  • Housen K. R. and Holsapple K. A. 1999. Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142: 2123.
  • Housen K. R. and Schmidt R. M. 1983. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. Journal of Geophysical Research 88(B3): 24852499.
  • Jakosky B. M. and Carr M. H. 1985. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 559561.
  • Kerley G. 1999. Equations of state for composite materials. Report KPS99-4. Albuquerque, NM: Kerley Publishing Services. 52 p.
  • Komatsu G., Ori G. G., Di Lorenzo S., Rossi A. P., and Neukum G. 2007. Combinations of processes responsible for Martian impact crater-“layered ejecta structures” emplacement. Journal of Geophysical Research 112(E6), doi:10.1029/2006JE002787.
  • Kormer S. B. 1968. Optical study of the characteristics of shock-compressed condensed dialectrics. Soviet Physics USPEKHI 11: 229254.
  • Krevslavsky M. A. and Head III J. W. 2006. Modification of impact craters in the northern plains of Mars: Implications for Amazonian climate history. Meteoritics & Planetary Science 41: 16331646.
  • Kring D. A. 2003. Potential habitats in impact-generated hydrothermal systems. Geochimica et Cosmochimica Acta 67: A236A236.
  • Lange M. A. and Ahrens T. J. 1983. The dynamic tensile strength of ice and ice-silicate mixtures. Journal of Geophysical Research 88(B2): 11971208.
  • Laskar J., Correia A. C. M., Gastineau M., Joutel F., Levrard B., and Robutel P. 2004. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170: 343364.
  • Levrard B., Forget F., Montmessin F., and Laskar J. 2004. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431: 10721075.
  • Lindstrom M., Shuvalov V., and Ivanov B. 2005. Lockne crater as a result of marine-target oblique impact. Planetary and Space Science 53: 803815.
  • Lyzenga G. A., Ahrens T. J., Nellis W. J., and Mitchell A. C. 1982. The temperature of shock-compressed water. Journal of Chemical Physics 76: 62826286.
  • Maeno N., Arakawa M., Yasutome A., Mizukami N., and Kanazawa S. 2003. Ice-ice friction measurements, and water lubrication and adhesion shear mechanisms. Canadian Journal of Physics 81: 241239.
  • Malin M. C. and Edgett K. S. 2000. Sedimentary rocks of early Mars. Science 290: 19271937.
  • McGetchin T. R., Settle T. R., Head M., and Head J. W. 1973. Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters 20: 226236.
  • McGlaun J. M., Thompson S. L., and Elrick M. G. 1990. CTH: A three-dimensional shock wave physics code. Journal of Impact Engineering 10: 351360.
  • Mellon M. T. and B. M. Jakosky 1995. The distribution and behavior of Martian ground ice during past and present epochs. Journal of Geophysical Research 100(E6): 1178111799.
  • Melosh H. J. and Ivanov B. A. 1999. Impact crater collapse. Annual Reviews of Earth and Planetary Science 27: 385415.
  • Meresse S. F., Costard F., Mangold N., Baratoux D., and Boyce J. M. 2006. Martian perched craters and large ejecta volume: Evidence for episodes of deflation in the northern lowlands. Meteoritics & Planetary Science 41: 16471658.
  • Milliken R. E., Mustard J. F., and Goldsby D. L. 2003. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research 108(E6), doi:10.1029/2002JE002005.
  • Mischna M. A., Richardson M. I., Wilson R. J., and McCleese D. J. 2003. On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. Journal of Geophysical Research 108(E6), doi:10.1029/2003JE002051.
  • Mitrofanov I., Anfimov D., Kozyrev A., Litvak M., Sanin A., Tret'yakov V., Krylov A., Shvetsov V., Boynton W., Shinohara C., Hamara D., and Saunders R. S. 2002. Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297: 7881.
  • Mouginis-Mark P. 1981. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45: 6076.
  • Mouginis-Mark P. J., Tornabene L. L., Boyce J. M., and McEwen A. S. 2007. Impact melt and water release at Tooting Crater, Mars (abstract #3039). Seventh International Conference on Mars. CD-ROM.
  • Mustard J. F., Cooper C. D., and Rifkin M. K. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412: 411414.
  • Neukum G., Jaumann J., Hoffmann H., Hauber E., Head J. W., Basilevsky A. T., Ivanov B. A., Werner S. C., Gasselt S. V., Murray J. B., McCord T., and HRSC 2004. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432: 971979.
  • Newsom H. E., Hagerty J. J., and Thorsos I. E. 2001. Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1: 7187, doi:10.1089/153110701750137459.
  • Oberbeck V. R. 1975. The role of ballistic erosion and sedimentation in lunar stratigraphy. Review of Geophysics and Space Physics 13: 337362.
  • Oberbeck V. R. and Quaide W. L. 1967. Estimated thickness of a fragmental surface layer of Oceanus Procellarum. Journal of Geophysical Research 72: 46974704.
  • Ormö J., Dohm J. M., Ferris J. C., Lepinette A., and Fairen A. G. 2004. Marine-target craters on Mars? An assessment study. Meteoritics & Planetary Science 39: 333346.
  • Ormö J., Shuvalov V. V., and Lindstrom M. 2002. Numerical modeling for target water depth estimation of marine-target impact craters. Journal of Geophysical Research 107(E12), doi:10.1029/2002JE001865.
  • OwenT. 1992. The composition and early history of the atmosphere of Mars. In Mars, edited by KiefferH. H., JakoskyB. M., SnyderC. W., MatthewsM. S. Tucson: The University of Arizona Press. pp. 818834.
  • Pathare A. V., Paige D. A., and Turtle E. 2005. Viscous relaxation of craters with the Martian south polar layered deposits. Icarus 174: 396418.
  • Petrenko V. F. and Whitworth R. W. 1999. Physics of ice. New York: Oxford University Press. 392 p.
  • Phillips R. J., Zuber M. T., Solomon S. C., Golombek M. P., Jakosky B. M., Banerdt W. B., Smith D. E., Williams R. M. E., Hynekk B. M., Aharonson O., and S. A. H. II 2001. Ancient geodynamics and global-scale hydrology on Mars. Science 291: 25872591.
  • PiekutowskiA. J. 1977. Cratering mechanisms observed in laboratory-scale high-explosive experiments, in Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 67102.
  • Pierazzo E., Artemieva N. A., and Ivanov B. A. 2005. Starting conditions for hydrothermal systems underneath Martian craters: Hydrocode modeling. GSA Special Paper 384. Boulder: Geological Society of America. pp. 443457.
  • PikeR. J. 1988. Geomorphology of impact craters on Mercury. In Mercury, edited by ChapmanC. R., MatthewsM. S., and VilasF. Tucson: The University of Arizona Press. pp. 165273.
  • Poulet F., Bibring J., Mustard J. F., Gendrin A., Mangold N., Langevin Y., Arvidson R. E., Gondet B., Gómez C., and Team O. 2005. Phyllosilicates on Mars and implications for early Martian climate. Science 438: 623627.
  • Quaide W. L. and Oberbeck V. R. 1968. Thickness determinations of the lunar surface layer from lunar impact craters. Journal of Geophysical Research 73: 52475270.
  • Rathbun J. A. and Squyres S. W. 2002. Hydrothermal systems associated with Martian impact craters. Icarus 157: 362372.
  • Sammonds P. R., Murrell S. A. F., and Rist M. A. 1998. Fracture of multiyear sea ice. Journal of Geophysical Research 103(C10)21: 795-721,816.
  • Schenk P. M. 2002. Thickness constraints on the icy shells of the Galilean satellites from a comparison of crater shapes. Nature 417: 419421.
  • Schultz P. H. 1992. Atmospheric effects on ejecta emplacement. Journal of Geophysical Research 97(E7): 11,623-11,662.
  • Sekine T., Duffy T. S., Rubin A. M., Anderson W. W., and Ahrens T. J. 1995. Shock compression and isentropic release of granite. Geophysical Journal International 120: 247261.
  • Senft L. E. and Stewart S. T. 2007. Modeling impact cratering in layered surfaces. Journal of Geophysical Research 112(E11): doi:10.1029/2007JE002894.
  • Showman A. P. and Malhotra R. 1999. The Galilean satellites. Science 286: 7784.
  • Shuvalov V., Dypvik H., and Tsikalas F. 2002. Numerical simulations of the Mjølnir marine impact crater. Journal of Geophysical Research 107: 5047.
  • Shuvalov V. V. and Trubestkaya I. A. 2002. Numerical modeling of marine target impacts. Solar System Research 36: 417430.
  • Stewart S. T. and Ahrens T. J. 2005. Shock properties of H2O Ice. Journal of Geophysical Research 110(E03005), doi:10.1029/2004JE002305.
  • Stewart S. T., Seifter A., and Obst A. W. 2008. Measurements of emission temperatures from shocked H2O ice (abstract #2301). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Stewart S. T. and Valiant G. J. 2006. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteoritics & Planetary Science 41: 15071537.
  • Swegle J. W. 1990. Irreversible phase transitions and wave propagation in silicate geologic materials. Journal of Applied Physics 68: 15631579.
  • Tornabene L. L., McEwen A. S., Grant J. A., Mouginis-Mark P. J., Squyres S. W., Wray J. J., and HiRISE Science Team. 2007a. Evidence for the role of volatiles on Martian impact craters as revealed by HIRISE (abstract #2215). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Tornabene L. L., McEwen A. S., Osinski G. R., Mouginis-Mark P. J., Boyce J. M., Williams R. M. E., Wray J. J., Grant J. A., and HiRISE Science Team. (2007b. Impact melting and the role of subsurface volatiles: Implications for the formation of valley networks and phyllosilicate-rich lithologies on early Mars (abstract #3288). Seventh International Conference on Mars. CD-ROM.
  • Wagner W. and Pruss A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31: 387535.
  • Wünnemann K. and Ivanov B. A. 2003. Numerical modelling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planetary and Space Science 51: 831845.
  • Zhang Y. 1999. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402: 648650.