SEARCH

SEARCH BY CITATION

REFERENCES

  • Agee C. B., Li J., Shanon M. C., and Circone S. 1995. Pressure-temperature phase diagram for the Allende meteorite. Journal of Geophysical Research 100: 17,72517,740.
  • Asahara Y., Kubo T., and Kondo T. 2004. Phase relations of a carbonaceous chondrite at lower mantle conditions. Physics of the Earth and Planetary Interiors 143–144: 421432.
  • Barrat J. A., Chaussidon M., Bohn M., Gillet P., Göpel C., and Lesourd M. 2005. Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochimica et Cosmochimica Acta 69: 55975609.
  • Beck P., Gillet P., El Goresy A., and Mostefaoui S. 2005. Time scales of shock processes in chondritic and Martian meteorites. Nature 435: 10711074.
  • Brearley A. J., Rubie D. C., and Ito E. 1992. Mechanisms of the transformations between the α, β and γ polymorphs of Mg2SiO4 at 15 GPa. Physics and Chemistry of Minerals 18: 343358.
  • Chen M., Sharp T. G., El Goresy A., Wopenka B., and Xie X. 1996. The majorite-pyrope + magnesiowüstite assemblage: Constraints on the history of shock veins in chondrites. Science 271: 15701573.
  • Chen M., El Goresy A., and Gillet P. 2004. Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proceedings of the National Academy of Sciences 101: 15,03315,037.
  • El Goresy A., Chen M., Gillet P., and Dubrovinsky L. S. 2000. Shock-induced high-pressure phase transition of labradorite to hollandite “(Na47-Ca51-K2)” in Zagami and the assemblage hollandite “(Na80-Ca12-K8)”+ jadeite in L chondrites: constraints to peak shock pressures (abstract). Meteoritics & Planetary Science 35: A51.
  • Ferroir T., Beck P., Van de Moortèle B., Bohn M., Reynard B., Simionovici A., El Goresy A., and Gillet P. 2008. Akimotoite in the Tenham meteorite: Crystal chemistry and high-pressure transformation mechanisms. Earth and Planetary Science Letters 275: 2631.
  • Gillet P., Chen M., Dubrovinsky L., and El Goresy A. 2000. Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287: 16331636.
  • Gillet P., El Goresy A., Beck P., and Chen M. 2007. High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: Mechanisms of phase transformations and constraints to pressure and temperature histories. In Advances in high-pressure mineralogy, edited by OhtaniE. Boulder: The Geological Society of America. pp. 5782.
  • Grossman J. N. 1999. The Meteoritical Bulletin, No. 83, 1999 July. Meteoritics & Planetary Science 34: A169A186.
  • Hogrefe A., Rubie D. C., Sharp T. G., and Seifert F. 1994. Metastability of enstatite in deep subducting lithosphere. Nature 372: 351353.
  • Ito E. and Takahashi E. 1989. Post-spinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research 94: 10,63710,646.
  • James O. B. 1969. Jadeite: Shock-induced formation from oligoclase, Ries crater, Germany. Science 165: 10051008.
  • Karato S., Riedel M. R., and Yuen D. A. 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors 127: 83108.
  • Katsura T. and Ito E. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research 94: 15,66315,670.
  • Kerschhofer L., Sharp T. G., and Rubie D. C. 1996. Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science 274: 7981.
  • Kerschhofer L., Rubie D. C., Sharp T. G., McConnell J. D. C., and Dupas-Bruzek C. 2000. Kinetics of intracrystalline olivine-ringwoodite transformation. Physics of the Earth and Planetary Interiors 121: 5976.
  • Kimura M., Suzuki A., Kondo T., Ohtani E., and El Goresy A. 2000. Natural occurrence of high-pressure phases jadeite, hollandite, wadsleyite, and majorite-pyrope garnet in an H chondrite, Yamato 75100. Meteoritics & Planetary Science 35: A87A88.
  • Kirby S. H., Stein S., Okal E. A., and Rubie D. C. 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews in Geophysics 34: 261306.
  • Kubo T., Ohtani E., Kato T., Shinmei T., and Fujino K. 1998. Effects of water on the α-β transformation kinetics in San Carlos olivine. Science 281: 8587.
  • Kubo T., Ohtani E., and Funakoshi K. 2004. Nucleation and growth kinetics of the α-β transformation in Mg2SiO4 determined by in situ synchrotron powder X-ray diffraction. American Mineralogist 89: 285293.
  • Kubo T., Kimura M., Nishi M., Tominaga A., Kato T., Kikegawa T., Funakoshi K., and Miyahara M. 2008. Formation of jadeite from plagioclase: Constraints on the P-T-t conditions of shocked meteorites. Meteoritics & Planetary Science 43: A82.
  • Liu L. 1978. High-pressure phase transformations of albite, jadeite and nepheline. Earth and Planetary Science Letters 37: 438444.
  • Madon M. and Poirier J. P. 1983. Transmission electron microscope observation of α, β and γ (Mg, Fe)2SiO4 in shocked meteorites: Planar defects and polymorphic transitions. Physics of the Earth and Planetary Interiors 33: 3144.
  • Malavergne V., Guyot F., Benzerara K., and Martinez I. 2001. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla, and Chassigny meteorites. Meteoritics & Planetary Science 36: 12971305.
  • Melosh H. J. 1989. Impact cratering: A geological process. New York: Oxford University Press. 256 p.
  • Miyahara M., El Goresy A., Ohtani E., Nagase T., Nishijima M., Vashaei Z., Ferroir T., Gillet P., Dubrovinsky L., and Simionovici A. 2008. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proceedings of the National Academy of Sciences 105: 85428547.
  • Mosenfelder J. L., Connolly J. A. D., Rubie D. C., and Liu M. 2000. Strength of (Mg,Fe)2SiO4 wadsleyite determined by relaxation of transformation stress. Physics of the Earth and Planetary Interiors 120: 6378.
  • Mosenfelder J. L., Marton F. C., Ross II C. R., Kerschhofer L., and Rubie D. C. 2001. Experimental constraints on the depth of olivine metastability in subducting lithosphere. Physics of the Earth and Planetary Interiors 127: 165180.
  • Ohtani E., Kagawa N., and Fujino K. 1991. Stability of majorite (Mg,Fe)SiO3 at high pressures and 1800 °C. Earth and Planetary Science Letters 102: 158166.
  • Ohtani E., Kimura Y., Kimura M., Takata T., Kondo T., and Kubo T. 2004. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: Constraints on shock conditions and parent body size. Earth and Planetary Science Letters 227: 505515.
  • Price G. D. 1983. The nature and significance of stacking faults in wadsleyite, natural β-(Mg,Fe)2SiO4 from the Peace River Meteorite. Physics of the Earth and Planetary Interiors 33: 137147.
  • Price G. D., Putnis A., Angrell S. O., and Smith D. G. W. 1983. Wadsleyite, natural β-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist 21: 2935.
  • Putnis A. and Price G. D. 1979. High-pressure (Mg,Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280: 217218.
  • Riedel M. R. and Karato S. 1997. Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth and Planetary Science Letters 148: 2743.
  • Rubie D. C. 1984. The olivine-spinel transformation and the rheology of subducting lithosphere. Nature 308: 505508.
  • Rubie D. C. and Ross C. R. 1994. Kinetics of olivine-spinel transformation in subducting lithosphere: Experimental constraints and implications for deep slab processes. Physics of the Earth and Planetary Interiors 86: 223241.
  • Schmitt R. T. 2000. Shock experiments with the H6 chondrite Kernouvé: Pressure calibration of microscopic shock effects. Meteoritics & Planetary Science 35: 545560.
  • Sharp T. G. and DeCarli P. S. 2006. Shock effects in meteorites. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y. Tucson: The University of Arizona Press. pp. 653677.
  • Smith J. V. and Mason B. 1970. Pyroxene-garnet transformation in Coorara meteorite. Science 168: 832833.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55: 38453867.
  • Sung C. M. and Burns R. G. 1976. Kinetics of high pressure phase transitions: implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics 31: 132.
  • Tomioka N. 2007. A model for the shear mechanism in the enstatite-akimotoite phase transition. Journal of Mineralogical and Petrological Sciences 102: 226232.
  • Tomioka N. and Fujino K. 1997. Natural (Mg,Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science 277: 10841086.
  • Tomioka N. and Fujino K. 1999. Akimotoite, (Mg,Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist 84: 267271.
  • Tomioka N., Mori H., and Fujino K. 2000. Shock-induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite. Geophysical Research Letters 27: 39974000.
  • Tutti F. 2007. Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Physics of the Earth and Planetary Interiors 161: 143149.
  • Xie X., Chen M., Dai C., El Goresy A., and Gillet P. 2001a. A comparative study of naturally and experimentally shocked chondrites. Earth and Planetary Science Letters 187: 345356.
  • Xie X., Chen M., and Wang D. 2001b. Shock-related mineralogical features and P-T history of the Suizhou L6 chondrite. European Journal of Mineralogy 13: 11771190.
  • Xie Z. and Sharp T. G. 2004. High-pressure phases in shock-induced melt veins of Umbarger L6 chondrite: Constraints of shock pressure. Meteoritics & Planetary Science 39: 20432054.
  • Xie Z. and Sharp T. G. 2007. Host rock solid-state transformation in a shock-induced melt veins of Tenham L6 chondrite. Earth and Planetary Science Letters 254: 433445.
  • Xie Z., Sharp T. G., and DeCarli P. S. 2006. High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration. Geochimica et Cosmochimica Acta 70: 504515.
  • Yagi A., Suzuki T., and Akaogi M. 1994. High pressure transitions in the system KAlSi3O8-NaAlSi3O8. Physics and Chemistry of Minerals 21: 1217.
  • Yanai K. and Kojima H. 1995. Catalog of Antarctic meteorites. Tokyo: National Institute of Polar Research. 230 p.
  • Zhang J. and Herzberg C. 1994. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. Journal of Geophysical Research 99: 17,72917,742.
  • Zhang A., Hsu W., Wang R., and Ding M. 2006. Pyroxene polymorphs in melt veins of the heavily shocked Sixiangkou L6 chondrite. European Journal of Mineralogy 18: 719726.