SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O’D., Hutchison R., and Barber D. J. 1989. Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth and Planetary Science Letters 95:187207.
  • Ashworth J. R. 1980. Chondrite thermal histories: Clues from electron microscopy of orthopyroxene. Earth and Planetary Science Letters 46:167177.
  • Ashworth J. R. and Barber D. J. 1977. Electron microscopy of some stony meteorites. Philosophical Transactions of the Royal Society of London A 286:493506.
  • Asimow P. D. and Ghiorso M. S. 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83:11271131.
  • Bennett M. E. III and McSween H. Y. Jr. 1996. Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteoritics & Planetary Science 31:783792.
  • Bland P. A., Zolensky M. E., Benedix G. K., and Sephton M. A. 2006. Weathering of chondritic meteorites. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y.Jr. Tucson, AZ: The University of Arizona Press. pp. 853867.
  • Boles J. R. 1982. Active albitization of plagioclase, Gulf Coast Tertiary. American Journal of Science 282:165180.
  • Bouvier A., Blichert-Toft J., Moynier F., Vervoort J. D. and And Albaréde F 2007. Pb–Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta 71:15831604.
  • Brady J. B. and Yund R. A. 1983. Interdiffusion of K and Na in alkali feldspars; homogenization experiments. American Mineralogist 68:106111.
  • Brearley A. J. 2006. The action of water. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y.Jr. Tucson, AZ: The University of Arizona Press. pp. 587624.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, edited by PapikeJ. J. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 1-33-398.
  • Chen M. and El Goresy A. 2000. The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures. Earth and Planetary Science Letters 179:489502.
  • Cherniak D. J. 2002. Ba diffusion in feldspar. Geochimica et Cosmochimica Acta 66:16471650.
  • Cherniak D. J. 2003. Silicon self-diffusion in single-crystal natural quartz and feldspar. Chemical Geology 214:655668.
  • Ciesla F. J. and Charnley S. B. 2006. The physics and chemistry of nebular evolution. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y.Jr. Tucson, AZ: The University of Arizona Press. pp. 209230.
  • Curtis D. B. and Schmitt R. A. 1979. The petrogenesis of L-6 chondrites; Insights from the chemistry of minerals. Geochimica et Cosmochimica Acta 43:10911104.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119:197212.
  • Grimm R. E. 1985. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies. Journal of Geophysical Research 90:B2, 20222028.
  • Grossman J. N. and Brearley A. J. 2005. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science 40:87122.
  • Grossman J. N., Alexander C. M. O’D., Wang J. H., and Brearley A. J. 2000. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics & Planetary Science 35:467486.
  • Grossman J. N., Alexander C. M. O’D., Wang J. H., and Brearley A. J. 2002. Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteoritics & Planetary Science 37:4973.
  • Grove T. L., Ferry J. M., and Spear F. S. 1983. Phase transitions and decomposition relations in calcic plagioclase. American Mineralogist 68:4159.
  • Herbert F. 1989. Primordial electrical induction heating of asteroids. Icarus 78:402410.
  • Herbert F. and Sonnett C. P. 1979. Electromagnetic heating of minor planets in the early solar system. Icarus 40:484496.
  • Hirt W. G., Wenk H. R., and Boles J. R. 1993. Albitization of plagioclase crystals in the Stevens sandstone (Miocene), San Joaquin Basin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas: A TEM/AEM study. Geological Society of America Bulletin 105:708714.
  • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y.Jr. Tucson, AZ: The University of Arizona Press. pp. 567586.
  • Hutchison R., Alexander C. M. O’D., and Barber D. J. 1987. The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochimica et Cosmochimica Acta 51:18751882.
  • Jones R. H. 1990. Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta 54:17851802.
  • Kessel R., Beckett J. R., and Stolper E. M. 2007. The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochimica et Cosmochimica Acta 71:18551881.
  • Kovach H. and Jones R. H. 2007a. Compositional heterogeneity of plagioclase in equilibrated ordinary chondrites (abstract #1307). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Kovach H. and Jones R. H. 2007b. Plagioclase compositions in equilibrated ordinary chondrites (abstract #5303). Meteoritics & Planetary Science 42:A87.
  • Krot A. N., Keil K., Goodrich C. A., Scott E. R. D., and Weisberg M. K. 2005. Classification of meteorites. In Meteorites, comets, and planets, edited by DavisA. M. Treatise on Geochemistry, vol. 1. Oxford: Elsevier-Pergamon. pp. 83128.
  • Leroux H., Doukhan J.-C., and Guyot F. 1996. An analytical electron microscopy (AEM) investigation of opaque inclusions in some type 6 ordinary chondrites. Meteoritics & Planetary Science 31:767776.
  • McSween H. Y. Jr. and Patchen A. D. 1989. Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism. Meteoritics 24:219226.
  • Miyamoto M., Fujii N., and Takeda H. 1981. Ordinary chondrite parent body: An internal heating model. Proceedings, 12th Lunar and Planetary Science Conference. pp. 11451152.
  • Nagahara H. 1980. Petrology of “equilibrated” chondrites 2. Metamorphism and thermal history. Memoirs of National Institute of Polar Research (Special Issue) 17:3249.
  • Nakamuta Y. and Motomura Y. 1999. Sodic plagioclase thermometry of type 6 ordinary chondrites: Implications for the thermal histories of parent bodies. Meteoritics & Planetary Sciences 34:763772.
  • Onuma N., Clayton R. N., and Mayeda T. K. 1972. Oxygen isotope temperatures of ‘‘equilibrated’’ ordinary chondrites. Geochimica et Cosmochimica Acta 36:157168.
  • Ostertag R. and Stöffler D. 1982. Thermal annealing of experimentally shocked feldspar crystals. Journal of Geophysical Research 87(Suppl.):A457A463.
  • Ramseyer K., Boles J. R., and Lichtner P. C. 1992. Mechanism of plagioclase albitization. Journal of Sedimentary Petrology 62:349356.
  • Rubin A. E. 1992. A shock metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochimica et Cosmochimica Acta 56:17051714.
  • Rubin A. E. 1995. Petrologic evidence for collisional heating of chondritic asteroids. Icarus 113:156167.
  • Rubin A. E. 2004. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids. Geochimica et Cosmochimica Acta 68:673689.
  • Rubin A. E., Zolensky M. E., and Bodnar R. J. 2002. The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteoritics & Planetary Science 37:125141.
  • Scott E. R. D. and Krot A. N. 2005. Chondrites and their components. In Meteorites, comets, and planets, edited by DavisA. M. Treatise on Geochemistry, vol. 1. Oxford: Elsevier-Pergamon. pp. 143200.
  • Scott E. R. D. and Rajan R. S. 1981. Metallic minerals, thermal histories, and parent bodies of some xenolithic, ordinary chondrites. Geochimica et Cosmochimica Acta 45:5367.
  • Shimazu H. and Terasawa T. 1995. Electromagnetic induction heating of meteorite parent bodies by the primordial solar wind. Journal of Geophysical Research 100:16,92316,930.
  • Taylor G. J., Maggiore P., Rubin A. E., Scott E. R. D., and Keil K. 1987. Original structures, and fragmentation and reassembly history of asteroids: Evidence from meteorites. Icarus 69:113.
  • Trieloff M., Jessberger E. K., Herrwerth I., Hopp J., Fiéni C., Ghélis M., Bourot-Denise M., and Pellas P. 2003. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422:502506.
  • Van Schmus W. R. and Ribbe P. H. 1968. The composition and structural state of feldspar from chondritic meteorites. Geochimica et Cosmochimica Acta 32:13271342.
  • Van Schmus W. R. and Wood J. A. 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31:747765.
  • Weisberg M. K., McCoy T. J., and Krot A. N. 2006. Systematics and evaluation of meteorite classification. In Meteorites and the early solar system II, edited by LaurettaD. S. and McSweenH. Y.Jr. Tucson, AZ: The University of Arizona Press. pp. 1952.
  • Wen S. X. and Nekvasil H. 1994. SOLVCALC—An interactive graphics program package for calculating the ternary feldspar solvus and for 2-feldspar geothermometry. Computers and Geosciences 20:10251040.
  • Zolensky M. E., Bodnar R. J., Gibson E. K. Jr., Nyquist L. E., Reese Y., Shih C.-Y., and Wiesmann H. 1999. Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285:13771379.