SEARCH

SEARCH BY CITATION

References

  • Achterbergh E. V., Ryan C. G., Jackson S. E., and Griffin W. L. 2001. Appendix 3: Data reduction software for LA-ICP-MS. In Laser ablation-ICP-MS in the earth sciences edited by SylvesterP., vol. 29, Short Course Series. Québec: Mineralogical Association of Canada. pp. 243.
  • Ackerbauer S., Krendelsberger N., Weitzer F., Hiebl K., and Schuster J. C. 2009. The constitution of the ternary system Fe-Ni-Si. Intermetallics 17:414420.
  • Campbell A. J. and Humayun M. 2004. Formation of metal in the CH chondrites ALH 85085 and PCA 91467. Geochimica et Cosmochimica Acta 68:34093422.
  • Campbell A. J. and Humayun M. 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta 69:47334744.
  • Campbell A. J., Humayun M., Meibom A., Krot A. N., and Keil K. 2001. Origin of zoned metal grains in the QUE 94411 chondrite. Geochimica et Cosmochimica Acta 65:163180.
  • Campbell A. J., Simon S. B., Humayun M., and Grossman L. 2003. Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochimica et Cosmochimica Acta 67:31193134.
  • Campbell A. J., Humayun M., and Weisberg M. K. 2005a. Compositions of zoned and unzoned metal in the CBb chondrites Hammadah al Hamra 237 and Queen Alexandra Range 94627. Meteoritics & Planetary Science 40:11311148.
  • Campbell A. J., Zanda B., Perron C., Meibom A., and Petaev M. I. 2005b Origin and thermal history of Fe-Ni metal in primitive chondrites. In Chondrites and the protoplanetary disk, edited by KrotA. N., ScottE. R. D., and ReipurthB. vol. 344. San Francisco: Astronomical Society of the Pacific. pp. 407431.
  • Chabot N. L. and Jones J. H. 2003. The parameterization of solid metal-liquid metal partitioning of siderophile elements. Meteoritics & Planetary Science 38:14251436.
  • Chabot N. L., Campbell A. J., Jones J. H., Humayun M., and Lauer H. V. Jr. 2006. The influence of carbon on trace element partitioning behavior. Geochimica et Cosmochimica Acta 70:13221335.
  • Corrigan C. M., Chabot N. L., McCoy T. J., McDonough W. F., Watson H. C., Saslow S. A., and Ash R. D. 2009. The iron-nickel-phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica et Cosmochimica Acta 73:26742691.
  • Dambaev V. A. and Ulyanov A. A. 1998 Opaque minerals in enstatite chondrites: Perryite-silicophosphide Ni and Fe in PCA 91085 and conditions of its formation (abstract). 29th Lunar and Planetary Science Conference. p. 1282.
  • Easton A. J. 1986. Studies of kamacite, perryite, and schreibersite in E-chondrites and aubrites. Meteoritics 21:7993.
  • Ehlers K. and El Goresy A. 1988. Normal and reverse zoning in niningerite: A novel key parameter to the thermal histories of EH-chondrites. Geochimica et Cosmochimica Acta 52:877887.
  • El Goresy A. 1985. The Qingzhen reaction: Fingerprints of the EH planet? Meteoritics 20:639.
  • El Goresy A., Yabuki H., Ehlers K., Woolum D. S., and Pernika E. 1988. Qingzhen and Yamato 691: A tentative alphabet soup for the EH chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 1:65101.
  • Fogel R. A., Hess P. C., and Rutherford M. J. 1989. Intensive parameters of enstatite chondrite metamorphism. Geochimica et Cosmochimica Acta 53:27352746.
  • Grossman L. 1972. Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta 36:597619.
  • Grossman J. N. 1998. The Meteoritical Bulletin, No. 82. Meteoritics & Planetary Science 33:221239.
  • Grossman J. N. and Wasson J. T. 1985. The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta 49:925939.
  • Grossman L., Beckett J. R., Fedkin A. V., Simon S. B., and Ciesla F. J. 2008. Redox conditions in the solar nebula: Observational, experimental, and theoretical constraints. In Oxygen in the solar system, edited by MacPhersonG. J. Reviews in Mineralogy and Geochemistry, vol. 68. pp. 93140.
  • Hamester M., Weiderin D., Wills J., Kerl W., and Douthitt C. B. 1999. Strategies for isotope ratio measurements with a double focusing sector þ eld ICP-MS. Fresenius Journal of Analytical Chemistry 364:495497.
  • Horan M. F., Walker R. J., Morgan J. W., Grossman J. N., and Rubin A. E. 2003. Highly siderophile elements in chondrites. Chemical Geology 196:520.
  • Hutson M. and Ruzicka A. 2000. A multi-step model for the origin of E3 (enstatite) chondrites. Meteoritics & Planetary Science 35:601608.
  • Ikeda Y. 1989. Petrochemical study of the Yamato-691 enstatite chondrite (E3) IV: Descriptions and mineral chemistry of opaque-mineral nodules. Proceedings of the NIPR Symposium on Antarctic Meteorites 2:109146.
  • Kallemeyn G. W. and Wasson J. T. 1986. Compositions of enstatite (EH3, EH4,5 and EL6) chondrites: implications regarding their formation. Geochimica et Cosmochimica Acta 50:21532164.
  • Kelly W. R. and Larimer J. W. 1977. Chemical fractionations in meteorites—VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta 41:93111.
  • Kimura M. 1988. Origin of opaque minerals in an unequilibrated enstatite chondrite, Yamato-691. Proceedings of the NIPR Symposium on Antarctic Meteorites 1:5164.
  • Kong P., Mori T., and Ebihara M. 1997. Compositional continuity of enstatite chondrites and implications for heterogeneous accretion of the enstatite chondrite parent body. Geochimica et Cosmochimica Acta 61:48954914.
  • Kullerud G. and Yoder H. S. 1959. Pyrite stability relations in the FeS-S system. Economic Geology 54:533572.
  • Larimer J. W. and Ganapathy R. 1987. The trace element chemistry of CaS in enstatite chondrites and some implications regarding its origin. Earth and Planetary Science Letters 84:123134.
  • Larimer J. W. and Wasson J. T. 1988. Siderophile element fractionation. In Meteorites and the early solar system edited by KerridgeJ. F., and MathewsM. S. Tucson, AZ: The University of Arizona Press. pp. 416435.
  • Lauretta D. S., Lodders K., and Fegley B. Jr 1997. Experimental simulations of sulfide formation in the solar nebula. Science 277:358360.
  • Lin Y. and El Goresy A. 2002. A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills (EL3): Representatives of EH and EL parent bodies. Meteoritics & Planetary Science 37:577599.
  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591:12201247.
  • McCoy T., Dickinson T. L., and Lofgren G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science 34:735746.
  • McKinley S. G., Scott E. R. D., and Keil K. 1984. Composition and origin of enstatite in E chondrites. Proceedings, 14th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 89:B567B572.
  • Okada A., Kobayashi K., Ito T., and Sakurai T. 1991. Structure of synthetic perryite, (Ni,Fe)8(S,P)3. Acta Crystallographica 47:13581361.
  • Petaev M. I. and Wood J. A. 1998. The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteoritics & Planetary Science 33:11231137.
  • Petaev M. I. and Wood J. A. 2000. The condensation origin of zoned metal grains in Bencubbin/CH-like chondrites: Thermodynamic model (abstract #1608). 31st Lunar and Planetary Science Conference. CD-ROM.
  • Raghavan V. 1988a. Phase diagrams of ternary iron alloys, Part 2. Ternary systems containing iron and sulfur. Calcutta: Indian Institute of Metals. 360 p.
  • Raghavan V. 1988b. Phase diagrams of ternary iron alloys, Part 3. Ternary systems containing iron and phosphorus. Calcutta: Indian Institute of Metals. 229 p.
  • Rambaldi E. R., Rajan R. S., Housley R. M., and Wang D. 1986. Gallium-bearing sphalerite in a metal sulfide nodule of the Qingzhen (EH3) chondrite. Meteoritics 21:2331.
  • Righter K., Campbell A. J., and Humayun M. 2005. Diffusion of trace elements in FeNi metal: Application to zoned metal grains in chondrites. Geochimica et Cosmochimica Acta 69:31453158.
  • Romig A. D. and Goldstein J. I. 1980. Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperatures (700–300 degrees C). Metallurgical and Materials Transactions A 11:11511159.
  • Rubin A. E. 1985. Impact melt products of chondritic material. Reviews of Geophysics 23.
  • Scott E. R. D. 1982. Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochimica et Cosmochimica Acta 46:813823.
  • Sears D. W. 1978. Condensation and the composition of iron meteorites. Earth and Planetary Science Letters 41:128138.
  • Skinner B. J. and Luce F. D. 1971. Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist 56:12691296.
  • Smith B. A. and Goldstein J. I. 1977. The metallic microstructures and thermal histories of severely reheated chondrites. Geochimica et Cosmochimica Acta 41:10611065, 1067–1072.
  • Waldner P. and Pelton A. 2004. Critical thermodynamic assessment and modeling of the Fe-Ni-S system. Metallurgical and Materials Transactions B 35:897907.
  • Walker R. J., McDonough W. F., Honesto J., Chabot N. L., McCoy T. J., Ash R. D., and Bellucci J. J. 2008. Modeling fractional crystallization of group IVB iron meteorites. Geochimica et Cosmochimica Acta 72:21982216.
  • Wasson J. T. and Kallemeyn G. W. 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society of London. 325:535544.
  • Weisberg M. K. and Prinz M. 1998 Sahara 97096: A highly primitive EH3 chondrite with layered sulfide-metal-rich chondrules (abstract #1741). 29th Lunar and Planetary Science Conference. CD-ROM.
  • Weisberg M. K., Connolly H. C., Ebel D. S., and Kimura M. 2006. Sulfide-metal nodules in EH3 chondrites (abstract). Meteoritics & Planetary Science 41:A186.
  • Zanda B., Bourot-Denise M., Perron C., and Hewins R. H. 1994. Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science 265:18461849.