SEARCH

SEARCH BY CITATION

References

  • Agee C. B. and Draper D. S. 2004. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth and Planetary Science Letters 224:415429.
  • Akella J. and Boyd F. 1973. Partitioning of Ti and Al between coexisting silicates, oxides, and liquids. Proceedings, 4th Lunar Science Conference. pp. 10491059.
  • Andersen D. J., Lindsley D. H., and Davidson P. M. 1993. QUIlF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19:13331350.
  • Asimow P. D. and Longhi J. 2004. The significance of multiple saturation points in the context of polybaric near-fractional melting. Journal of Petrology 45:23492367.
  • Barrat J. A., Jambon A., Bohn M., Gillet P., Sautter V., Göpel C., Lesourd M., and Keller F. 2002. Petrology and chemistry of the picritic shergottite Northwest Africa 1068 (NWA 1068). Geochimica et Cosmochimica Acta 66:35053518.
  • Basaltic Volcanism Study Project. 1981. Basaltic volcanism on the terrestrial planets. New York: Pergamon Press, Inc. 1286 p.
  • Basu Sarbadhikari A., Day J. M. D., Liu Y., Rumble D. III, and Taylor L. A. 2009. Petrogenesis of olivine-phyric shergottite Larkman Nunatak 06319: Implications for enriched components in Martian basalts. Geochimica et Cosmochimica Acta 73:21902214.
  • Borisov A. and Jones J. H. 1999. An evaluation of Re, as an alternative to Pt, for the 1 bar loop technique; an experimental study at 1400 °C. American Mineralogist 84:15281534.
  • Carr M. J. 2000. Igpet for Windows. Somerset, NJ: Terra Softa Inc.
  • Crozaz G., Floss C., and Wadhwa M. 2003. Chemical alteration and REE mobilization in meteorites from hot and cold deserts. Geochimica et Cosmochimica Acta 67:47274741.
  • Delano J. W. 1979. Apollo 15 green glass-chemistry and possible origin. Proceedings, 10th Lunar and Planetary Science Conference. pp. 275300.
  • Delano J. W. 1980. Chemistry and liquidus phase relations of Apollo 15 red glass: Implications for the deep lunar interior. Proceedings, 11th Lunar and Planetary Science Conference. pp. 251288.
  • Dixon J. E., Stolper E. M., and Holloway J. R. 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Journal of Petrology 36:16071631.
  • Draper D. S., DuFrane S. A., Shearer J. C. K., Dwarzski R. E., and Agee C. B. 2006. High-pressure phase equilibria and element partitioning experiments on Apollo 15 green C picritic glass: Implications for the role of garnet in the deep lunar interior. Geochimica et Cosmochimica Acta 70:24002416.
  • Dreibus G. and Wänke H. 1985. Mars, a volatile-rich planet. Meteoritics 20:367381.
  • Elkins-Tanton L. T., Chatterjee N., and Grove T. L. 2003. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteoritics & Planetary Science 38:515527.
  • Filiberto J., Treiman A. H., and Le L. 2008. Crystallization experiments on a Gusev Adirondack basalt composition. Meteoritics & Planetary Science 43:11371146.
  • Filiberto J., Jackson C., Le L., and Treiman A. H. 2009. Partitioning of Ni between olivine and an iron-rich basalt: Experiments, partition models, and planetary implications. American Mineralogist 94:256261.
  • Filiberto J., Dasgupta R., Kiefer W. S., and Treiman A. H. 2010. High pressure, near-liquidus phase equilibria of the Home Plate basalt Fastball and melting in the Martian mantle. Geophysical Research Letters 37(L13201), doi: 10.1029/2010GL043999.
  • Folco L., Franchi I. A., D’Orazio M., Rocchi S., and Schultz L. 2000. A new Martian meteorite from the Sahara: The shergottite Dar al Gani 489. Meteoritics & Planetary Science 35:827839.
  • Frost D. and Wood B. 1995. Experimental measurements of the graphite C-O equilibrium and CO2 fugacities at high temperature and pressure. Contributions to Mineralogy and Petrology 121:303308.
  • Gasparik T. 2000. An internally consistent thermodynamic model for the system CaO-MgO-Al2O3-SiO2 derived primarily from phase equilibrium data. The Journal of Geology 108:103119.
  • Goodrich C. A. 2002. Olivine-phyric Martian basalts: A new type of shergottite. Meteoritics & Planetary Science 37:3134.
  • Goodrich C. A., Herd C. D. K., and Taylor L. A. 2003. Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottites. Meteoritics & Planetary Science 38:17731792.
  • Greshake A., Fritz J., and Stöffler D. 2004. Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta 68:23592377.
  • Gross J., Treiman A., Filiberto J., and Robinson K. 2010. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry and cooling history imply a magma similar to Yamato 980459 (abstract #1813). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Grove T. L. and Vaniman D. T. 1978. Experimental petrology of very low Ti (VLT) basalts. In Mare Crisium: The view from Luna 24, edited by MerrillR. B. and PapikeJ. J. New York: Pergamon Press. pp. 445471.
  • Herd C. D. K. 2003. The oxygen fugacity of olivine-phyric martian basalts and the components within the mantle and crust of Mars. Meteoritics & Planetary Science 38:17111875.
  • Herd C. D. K. 2006. Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. American Mineralogist 91:16161627.
  • Holloway J. R., Pan V., and Gudmundsson G. 1992. High-pressure fluid-absent melting experiments in the presence of graphite—Oxygen fugacity, ferric ferrous ratio and dissolved CO2. European Journal of Mineralogy 4:105114.
  • Jones J. H. 1984. Temperature-independent and pressure-independent correlations of olivine liquid partition-coefficients and their application to trace-element partitioning. Contributions to Mineralogy and Petrology 88:126132.
  • Jones J. H. 1995. Experimental trace element partitioning. In Rock physics and phase relations: A handbook of physical constants, edited by AhrensT. J. Washington, D.C.: American Geophysical Union. pp. 73104.
  • Jones J. H. 2003. Constraints on the structure of the martian interior determined from the chemical and isotopic systematics of SNC meteorites. Meteoritics & Planetary Science 38:18071814.
  • Jurewicz A. J. G., Williams R. J., Le L., Wagstaff J., Lofgren G., Lanier A., Carter W., and Roshko A. 1993. Technical update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces. NASA Technical Memoradum 104774. Interim Report National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA. National Aeronautics and Space Administration. 40 p.
  • Kushiro I. and Mysen B. O. 2002. A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt. Geochimica et Cosmochimica Acta 66:22672272.
  • Lodders K. 1998. A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science 33:A183A190.
  • Mandeville C. W., Webster J. D., Rutherford M. J., Taylor B. E., Timbal A., and Faure K. 2002. Determination of molar absorptivities in infrared absorption bands of H2O in andesitic glasses. American Mineralogist 87:813821.
  • Médard E. and Grove T. 2008. The effect of H2O on the olivine liquidus of basaltic melts: Experiments and thermodynamic models. Contributions to Mineralogy and Petrology 155:417432.
  • Meyer C. 2010. Mars meteorite compendium. JSC #27672 Revision C. Astromaterials Research and Exploration Science (ARES). Houston, TX: NASA Johnson Space Center.
  • Mibe K., Fujii T., Yasuda A., and Ono S. 2006. Mg-Fe partitioning between olivine and ultramafic melts at high pressures. Geochimica et Cosmochimica Acta 70:757766.
  • Mikouchi T., Miyamoto M., and McKay G. A. 2001. Mineralogy and petrology of the Dar al Gani 476 Martian meteorite: Implications for its cooling history and relationship to other shergottites. Meteoritics & Planetary Science 36:531548.
  • Monders A. G., Médard E., and Grove T. L. 2007. Phase equilibrium investigations of the Adirondack class basalts from the Gusev plains, Gusev crater, Mars. Meteoritics & Planetary Science 42:131148.
  • Musselwhite D. S., Dalton H. A., Kiefer W. S., and Treiman A. H. 2006. Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the thermal structure of the Martian mantle. Meteoritics & Planetary Science 41:12711290.
  • Nekvasil H., Dondolini A., Horn J., Filiberto J., Long H., and Lindsley D. H. 2004. The origin and evolution of silica-saturated alkalic suites: An experimental study. Journal of Petrology 45:693721.
  • Shearer C. K., Burger P. V., Papike J. J., Borg L. E., Irving A. J., and Herd C. D. K. 2008. Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine. Meteoritics & Planetary Science 43:12411258.
  • Squyres S. W., Aharonson O., Clark B. C., Cohen B. A., Crumpler L., De Souza P. A., Farrand W. H., Gellert R., Grant J., Grotzinger J. P., Haldemann A. F., Johnson J. R., Klingelhöfer G., Lewis K. W., Li R., McCoy T., McEwen A. S., McSween H. Y., Ming D. W., Moore J. M., Morris R. V., Morris R. V., Parker T. J., Rice J. W. Jr., Ruff S., Schmidt M., Schröder C., Soderblom L. A., and Yen A. 2007. Pyroclastic Activity at Home Plate in Gusev Crater, Mars. Science 316:738742.
  • Usui T., McSween H. Y. Jr., and Floss C. 2008. Petrogenesis of olivine-phyric shergottite Yamato-980459, revisited. Geochimica et Cosmochimica Acta 72:17111730.
  • Wadhwa M., Lentz R. C. F., McSween H. Y., and Crozaz G. 2001. A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites. Meteoritics & Planetary Science 36:195208.
  • Zipfel J., Scherer P., Spettel B., Dreibus G., and Schultz L. 2000. Petrology and chemistry of the new shergottite Dar al Gani 476. Meteoritics & Planetary Science 35:95106.