SEARCH

SEARCH BY CITATION

References

  • Andersen D. J., Lindsley D. H., and Davidson P. M. 1993. QUILF—A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers & Geosciences 19:13331350.
  • Benedix G. K., Ketcham R. A., Wilson L., Mccoy T. J., Bogard D. D., Garrison D. H., Herzog G. F., Xue S., Klein J., and Middleton R. 2008. The formation and chronology of the PAT 91501 impact-melt L chondrite with vesicle-metal-sulfide assemblages. Geochimica et Cosmochimica Acta 72:24172428.
  • Bennett M. E. III and McSween H. Y. Jr. 1996. Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteoritics & Planetary Science 31:783792.
  • Bogard D. D. 1995. Impact ages of meteorites—A synthesis. Meteoritics 30:244268.
  • Bogard D. D. and Garrison D. H. 2003. 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science 38:669710.
  • Bogard D. D. and Hirsch W. C. 1980. 40Ar-39Ar dating, Ar diffusion properties, and cooling rate determinations of severely shocked chondrites. Geochimica et Cosmochimica Acta 44:16671682.
  • Bogard D. D., Garrison D. H., Norman M., Scott E. R. D., and Keil K. 1995. 39Ar-40Ar age and petrology of Chico—Large-scale impact melting on the L-chondrite parent body. Geochimica et Cosmochimica Acta 59:13831399.
  • Bottinga Y. and Weill D. F. 1972. Viscosity of magmatic silicate liquids—Model for calculation. American Journal of Science 272:438.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. Planetary Materials 36:398.
  • Ciesla F. J., Davison T. M., and Collins G. S. 2009. Cooling of porous planetesimals after impacts: Implications for the thermal evolution of primitive bodies. Meteoritics & Planetary Science 44:5048.
  • Clayton R. N., Mayeda T. K., Goswami J. N., and Olsen E. J. 1991. Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta 55:23172337.
  • Connolly H. C., Smith C., Benedix G., Folco L., Righter K., Zipfel J., Yamaguchi A., and Aoudjehane H. C. 2007. The Meteoritical Bulletin, No. 92 (September). Meteoritics & Planetary Science 42:A1647A1694.
  • Davison T. M., Collins G. S., and Ciesla F. J. 2010. Numerical modelling of heating in porous planetesimal collisions. Icarus 208:468481.
  • Deer W. A., Howie R. A., and Zussman J. 1962. Rock-forming minerals. London: Longman Group Limited.
  • Fodor R. V. and Keil K. 1975. Implications of poikilitic textures in LL-group chondrites. Meteoritics 10:325339.
  • Fodor R. V. and Keil K. 1976. Carbonaceous and non-carbonaceous lithic fragments in plainview, Texas, chondrite—Origin and history. Geochimica et Cosmochimica Acta 40:177189.
  • Garrison D., Hamlin S., and Bogard D. 2000. Chlorine abundances in meteorites. Meteoritics & Planetary Science 35:419429.
  • Grier J. A., Kring D. A., Swindle T. D., Rivkin A. S., Cohen B. A., and Britt D. T. 2004. Analyses of the chondritic meteorite Orvinio (H6): Insight into the origins and evolution of shocked H chondrite material. Meteoritics & Planetary Science 39:14751493.
  • Grimm R. E. 1985. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies. Journal of Geophysical Research—Solid Earth and Planets 90:20222028.
  • Hevey P. J. and Sanders I. S. 2006. A model for planetesimal meltdown by Al-26 and its implications for meteorite parent bodies. Meteoritics & Planetary Science 41:95106.
  • Holsapple K., Giblin I., Housen K., Nakamura A., and Ryan E. 2002. Asteroid impacts: Laboratory experiments and scaling laws. In Asteroids III, edited by BottkeW. F., CellinoA., PaolicchiP., and BinzelR. P. Tucson, AZ: The University of Arizona Press. pp. 443462.
  • Hopfe W. D. and Goldstein J. I. 2001. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites. Meteoritics & Planetary Science 36:135154.
  • Housen K. 2009. Cumulative damage in strength-dominated collisions of rocky asteroids: Rubble piles and brick piles. Planetary and Space Science 57:142153.
  • Kleine T., Touboul M., Van Orman J. A., Bourdon B., Maden C., Mezger K., and Halliday A. N. 2008. Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters 270:106118.
  • Kring D. A., Swindle T. D., Britt D. T., and Grier J. A. 1996. Cat Mountain: A meteoritic sample of an impact-melted asteroid regolith. Journal of Geophysical Research—Planets 101:2935329371.
  • Kring D. A., Hill D. H., Gleason J. D., Britt D. T., Consolmagno G. J., Farmer M., Wilson S., and Haag R. 1999. Portales Valley: A meteoritic sample of the brecciated and metal-veined floor of an impact crater on an H-chondrite asteroid. Meteoritics & Planetary Science 34:663669.
  • Kunz J., Falter M., and Jessberger E. K. 1997. Shocked meteorites: Argon-40-argon-39 evidence for multiple impacts. Meteoritics & Planetary Science 32:647670.
  • Lindsley D. H. and Andersen D. J. 1983. A two-pyroxene thermometer (abstract). 13th Lunar and Planetary Science Conference. pp. 887906.
  • Lovera O. M., Grove M., Harrison T. M., and Mahon K. I. 1997. Systematic analysis of K-feldspar Ar-40/Ar-39 step heating results. 1. Significance of activation energy determinations. Geochimica et Cosmochimica Acta 61:31713192.
  • Maloy A. K. and Treiman A. H. 2007. Evaluation of image classification routines for determining modal mineralogy of rocks from X-ray maps. American Mineralogist 92:17811788.
  • Mason B. 1965. The chemical composition of olivine-bronzite and olivine-hypersthene chondrites. American Museum Novitiates 2223:138.
  • McBride K., Satterwhite C., and McCoy T. 2006. Description of MIL 05029 Antarctic meteorite newsletter. NASA STI/Recon Technical Report 29(2):141.
  • McCoy T. J., Keil K., Bogard D. D., Garrison D. H., Casanova I., Lindstrom M. M., Brearley A. J., Kehm K., Nichols R. H., and Hohenberg C. M. 1995. Origin and history of impact-melt rocks of enstatite chondrite parentage. Geochimica et Cosmochimica Acta 59:161175.
  • McDougall I. and Harrison T. M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method. New York/Oxford: Oxford University Press. 269 p.
  • McSween H. Y., Bennett M. E., and Jarosewich E. 1991. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry. Icarus 90:107116.
  • Min K. W., Mundil R., Renne P. R., and Ludwig K. R. 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochimica et Cosmochimica Acta 64:7398.
  • Mittlefehldt D. W. and Lindstrom M. M. 2001. Petrology and geochemistry of Patuxent Range 91501, a clast-poor impact melt from the L-chondrite parent body and Lewis Cliff 88663, an L7 chondrite. Meteoritics & Planetary Science 36:439457.
  • Nichols R. H. Jr. 2006. Chronological constraints on planetsimal accretion. In Meteorites and the early solar system II, edited by LaurettaD. S., and McSweenH. Y. Tucson, AZ: The University of Arizona Press. pp. 463472.
  • Onorato P. I. K., Uhlmann D. R., and Simonds C. H. 1978. Thermal history of Manicouagan impact melt sheet, Quebec. Journal of Geophysical Research 83:27892798.
  • Press W. H., Tuekolsky S. A., Vetterling W. T., and Flannery B. P. 1992. Numerical recipes in C: The art of scientific computing. Cambridge/New York: Cambridge University Press. 994 p.
  • Reisener R. J. and Goldstein J. I. 2003. Ordinary chondrite metallography: Part 2. Formation of zoned and unzoned metal particles in relatively unshocked H, L, and LL chondrites. Meteoritics & Planetary Science 38:16791696.
  • Rubin A. E. 1990. Kamacite and olivine in ordinary chondrites—Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta 54:12171232.
  • Rubin A. E. and Scott E. R. D. 1997. Abee and related EH chondrite impact-melt breccias. Geochimica et Cosmochimica Acta 61:425435.
  • Schwarz W. H. and Trieloff M. 2007. Constraints on the revision of the K decay constants. Geochimica et Cosmochimica Acta 71:A910.
  • Scott E. R. D. 1982. Origin of rapidly solidified metal-troilite grains in chondrites and iron-meteorites. Geochimica et Cosmochimica Acta 46:813823.
  • Shaw H. R. 1972. Viscosities of magmatic silicate liquids—Empirical method of prediction. American Journal of Science 272:870.
  • Smith B. A. and Goldstein J. I. 1977. Metallic microstructures and thermal histories of severely reheated chondrites. Geochimica et Cosmochimica Acta 41:10611072.
  • Steiger R. H. and Jager E. 1977. Subcommission on geochronology—Convention on use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36:359362.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:38453867.
  • Strom R. G., Malhotra R., Ito T., Yoshida F., and Kring D. A. 2005. The origin of planetary impactors in the inner solar system. Science 309:18471850.
  • Sullivan R., Greeley R., Pappalardo R., Asphaug E., Moore J. M., Morrison D., Belton M. J. S., Carr M., Chapman C. R., Geissler P., Greenberg R., Granahan J., Head J. W., Kirk R., McEwen A., Lee P., Thomas P. C., and Veverka J. 1996. Geology of 243 Ida. Icarus 120:119139.
  • Swindle T. D., Isachsen C. E., Weirich J. R., and Kring D. A. 2009. Ar-40-Ar-39 ages of H-chondrite impact melt breccias. Meteoritics & Planetary Science 44:747762.
  • Taylor G. J., Keil K., Berkley J. L., Lange D. E., Fodor R. V., and Fruland R. M. 1979. Shaw meteorite—History of a chondrite consisting of impact-melted and metamorphic lithologies. Geochimica et Cosmochimica Acta 43:323337.
  • Taylor G. J., Maggiore P., Scott E. R. D., Rubin A. E., and Keil K. 1987. Original structures, and fragmentation and reassembly histories of asteroids—Evidence from meteorites. Icarus 69:113.
  • Touboul M., Kleine T., Bourdon B., Palme H., and Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:12061209.
  • Trieloff M., Jessberger E. K., Herrwerth I., Hopp J., Fieni C., Ghelis M., Bourot-Denise M., and Pellas P. 2003. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422:502506.
  • Turcotte D. L. and Schubert G. 2002. Geodynamics. Cambridge/New York: Cambridge University Press. 456 p.
  • Turner G., Enright M. C., and Cadogan P. H. 1978. The early history of chondrite parent bodies inferred from 40Ar-39Ar ages (abstract). 9th Lunar and Planetary Science Conference. pp. 9891025.
  • Weirich J. R., Isachsen C. E., Johnson J. R., and Swindle T. D. 2010. Argon diffusion in pyroxene and albite (abstract #2137). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Weiss B. P., Shuster D. L., and Stewart S. T. 2002. Temperatures on Mars from 40Ar-39Ar thermochronology of ALH 84001. Earth and Planetary Science Letters 201:465472.
  • Willis J. and Goldstein J. I. 1981. Solidification zoning and metallographic cooling rates of chondrites. Nature 293:126127.
  • Wittmann A., Swindle T. D., Cheek L. C., Frank E. A., and Kring D. A. 2010. Impact cratering on the H chondrite parent asteroid. Journal of Geophysical Research 115, doi: 10.1029/2009JE003433.
  • Wood J. A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus 3:429.
  • Yang C. W., Williams D. B., and Goldstein J. J. 1996. A revision of the Fe-Ni phase diagram at low temperatures (<400 degrees C). Journal of Phase Equilibria 17:522531.
  • Yang C. W., Williams D. B., and Goldstein J. I. 1997. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta 61:29432956.
  • Zanda B., Bourotdenise M., Perron C., and Hewins R. H. 1994. Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science 265:18461849.