SEARCH

SEARCH BY CITATION

References

  • Agee C. B. and Draper D. S. 2004. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth and Planetary Science Letters 224:415429.
  • Asimow P. D. and Longhi J. 2004. The significance of multiple saturation points in the context of polybaric near-fractional melting. Journal of Petrology 45:23492367.
  • Barrat J. A., Jambon A., Bohn M., Gillet Ph., Sautte V., Göpel C., Lesourd M., and Keller F. 2002. Petrology and chemistry of the picritic shergottite Northwest Africa 1068. Geochimica et Cosmochimica Acta 66:35053518.
  • Borg L. E. and Draper D. S. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38:17131731.
  • Draper D. S. and Agee C. B. 2008. Fundamental importance of returned samples to understanding the Martian interior. Ground truth from Mars 2008. http://www.lpi.usra.edu/captem/msr2008/presentations/Draper.pdf. Accessed November 23, 2010.
  • Dreibus G. and Wänke H. 1982. Parent body of the SNC-meteorites: Chemistry, size and formation. Meteoritics 17:207208.
  • Dreibus G. and Wänke H. 1985. Mars, a volatile-rich planet. Meteoritics 20:367381.
  • Filiberto J. and Dasgupta R. 2010. Fe-Mg partitioning between olivine and Martian magmas: Application to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior (abstract). Meteoritics & Planetary Science 45:A54.
  • Filiberto J., Jackson C., Le L., and Treiman A. H. 2009. Partitioning of Ni between olivine and an iron-rich basalt: Experiments, partition models, and planetary implications. American Mineralogist 94:256261.
  • Filiberto J., Dasgupta R., Kiefer W. S., and Treiman A. H. 2010. High pressure, near-liquidus phase equilibria of the Home Plate basalt Fastball and melting in the Martian mantle. Geophysical Research Letters 37:L13201, doi:10.1029/2010GL043999.
  • Filiberto J., Musselwhite D., Gross J., Burgess K., Le L., and Treiman A. H. 2010. Experimental petrology, crystallization history and parental magma characteristics of olivine-phyric shergottite NWA 1068: Implications for the petrogenesis of “enriched” olivine-phyric shergotites. Meteoritics & Planetary Science 45:12581270.
  • Gasparik T. 2000. An internally consistent thermodynamic model for the system CaO-MgO-Al2O3-SiO2 derived primarily from phase equilibrium data. The Journal of Geology 108:103119.
  • Genge M. J. and Grady M. M. 1999. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteoritics & Planetary Science 34:341356.
  • Ghiorso M. S. and Sack R. O. 1991. Fe-Ti oxide geothermometry—Thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy and Petrology 108:485510.
  • Ghiorso M. S., Hirschmann M. M., Reiners P. W., and Kress V. C. 2002. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry Geophysics Geosystems 3:1030, doi:1010.1029/2001GC000217.
  • Goodrich C. A. 2002. Olivine-phyric Martian basalts: A new type of shergottite. Meteoritics & Planetary Science 37:B31B34.
  • Goodrich C. A. 2003. Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 lithology A. Geochimica et Cosmochimica Acta 67:37353771.
  • Goodrich C. A., Herd C. D. K., and Taylor L. A. 2003. Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottites. Meteoritics & Planetary Science 38:17731792.
  • Greshake A., Fritz J., and Stoeffler D. 2004. Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 890459: Evidence for a two-stage cooling and single-stage ejection history. Geochimica et Cosmochimica Acta 68:23592377.
  • Gross J., Treiman A. H., Filiberto J., and Robinson K. L. 2010. Primitive olivine-phyric shergottite NWA 5789: Petrology, mineral chemistry and cooling history imply a magma similar to Yamato 980459 (abstract #1813). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Herd C. D. K. 2003. The oxygen fugacity of olivine-phyric Martian basalts and the components within the mantle and crust of Mars. Meteoritics & Planetary Science 38:17931805.
  • Herd C. D. K. 2004. Oxygen in Martian meteorites: A review of results from mineral equilibria oxybarometers (abstract #3026). Workshop on Oxygen in the Terrestrial Planets.
  • Herd C. D. K. 2006. Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. American Mineralogist 91:16161627.
  • Herd C. D. K. 2008. Basalts as probes of planetary interior redox state. In Oxygen in the solar system, edited by MacPhersonG. Reviews in Mineralogy and Geochemistry, vol. 68, pp. 527553.
  • Irving A. J., Kuehner S. M., Herd C. D. K., Gellissen M., Korotev R. L., Puchtel I., Walker R. J., Lapen T. J., and Rumble D. III. 2010. Petrologic, elemental and multi-isotopic characterization of permafic olivine-phyric shergottite Northwest Africa 5789: A primitive magma derived from depleted Martian mantle (abstract #1547). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Karner J. M., Papike J. J., and Shearer C. K. 2003. Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process. American Mineralogist 88:806816.
  • Karner J. M., Papike J. J., and Shearer C. K. 2004. Plagioclase from planetary basalts: Chemical signatures that reflect planetary volatile budgets, oxygen fugacity, and styles of igneous differentiation. American Mineralogist 89:11011109.
  • Kushiro I. and Mysen B. O. 2002. A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt. Geochimica et Cosmochimica Acta 66:22672272.
  • Kushiro I. and Walter M. J. 1998. Mg-Fe partitioning between olivine and mafic-ultramafic melts. Geophysical Research Letters 25:23372340.
  • Langmuir C., Klein E., and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Geophysical Monograph-American Geophysical Union 71:183280.
  • Longhi J. and Pan V. 1989. The parent magmas of the SNC meteorites. Proceedings, 19th Lunar and Planetary Science Conference. pp. 451464.
  • Maloy A. K. and Treiman A. H. 2007. Evaluation of image classification routines for determining modal mineralogy of rocks from X-ray maps. American Mineralogist 92:17811788.
  • McKay G., Le L., Schwandt C., Mikouchi T., Koizumi E., and Jones J. H. 2004. Yamato 980459: The most primitive shergottite? (abstract #2154). 35th Lunar and Planetary Science Conference. CD-ROM.
  • McSween H. Y. Jr. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757779.
  • McSween H. Y. Jr. 2002. The rocks of Mars, from far and near. Meteoritics & Planetary Science 37:725.
  • McSween H. Y. Jr. and Jarosewich E. 1983. Petrogenesis of the Elephant Moraine A79001 meteorite: Multiple magma pulses on the shergottite parent body. Geochimica et Cosmochimica Acta 47:15011513.
  • Mikouchi T., Koizumi E., McKay G., Monkawa A., Ueda Y., Chokai J., and Miyamoto M. 2004. Yamato 980459: Mineralogy and petrology of a new shergottite-related rock from Antarctica. Antarctic Meteorite Research 17:1334.
  • Misawa K. 2003. The Yamato 980459 shergottite consortium. In International symposium: Evolution of solar system materials, National Institute for Polar Research, Tokyo. pp. 8485.
  • Musselwhite D. S., Dalton H. A., Kiefer W. S., and Treiman A. H. 2006. Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the thermal structure of the Martian mantle. Meteoritics & Planetary Science 41:12711290.
  • Nekvasil H., Dondolini A., Horn J., Filiberto J., Long H., and Lindsley D. H. 2004. The origin and evolution of silica-saturated alkalic suites: An experimental study. Journal of Petrology 45:693721.
  • Nekvasil H., Filiberto J., McCubbin F. M., and Lindsley D. H. 2007. Alkalic parental magmas for chassignites? Meteoritics & Planetary Science 42:979992.
  • O’Neill H. S. and Pownceby M. I. 1993. Thermodynamic data from redox reactions at high-temperatures: 1. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe- FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology 114:296314.
  • Papike J. J., Karner J. M., Shearer C. K., and Burger P. V. 2009. Silicate mineralogy of Martian meteorites. Geochimica et Cosmochimica Acta 73:74437485.
  • Peslier A. H., Hnatyshin D., Herd C. D. K., Walton E. L., Brandon A. D., Lapen T. J., and Shafer J. 2010. Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 74:45434576.
  • Sack R. O. and Ghiorso M. S. 1989. Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database—Thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy and Petrology 102:4168.
  • Sack R. O. and Ghiorso M. S. 1991a. Chromian spinels as petrogenetic indicators: Thermodynamic and petrologic applications. American Mineralogist 76:827847.
  • Sack R. O. and Ghiorso M. S. 1991b. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology 106:474505.
  • Sack R. O. and Ghiorso M. S. 1994a. Thermodynamics of multicomponent pyroxenes. 1. Formulation of a general-model. Contributions to Mineralogy and Petrology 116:277286.
  • Sack R. O. and Ghiorso M. S. 1994b. Thermodynamics of multicomponent pyroxenes. 2. Phase-relations in the quadrilateral. Contributions to Mineralogy and Petrology 116:287300.
  • Sack R. O. and Ghiorso M. S. 1994c. Thermodynamics of multicomponent pyroxenes. 3. Calibration of Fe2+(Mg)(-1), Tial2(Mgsi2)(-1), Tife2(3+)(Mgsi2)(-1), Alfe3+(Mgsi)(-1), Naal(Camg)(-1), Al-2(Mgsi)(-1) and Ca(Mg)(-1) exchange-reactions between pyroxenes and silicate melts. Contributions to Mineralogy and Petrology 118:271296.
  • Shearer C. K., McKay G., Papike J. J., and Karner J. M. 2006. Valence state partitioning of vanadium between olivine-liquid: Estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric martian basalts. American Mineralogist 91:16571663.
  • Shearer C. K., Burger P. V., Papike J. J., Borg L. E., Irving A. J., and Herd C. D. K. 2008. Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine. Meteoritics & Planetary Science 43:12411258.
  • Stolper E. and McSween H. Y. Jr. 1979. Petrology and origin of the shergottite meteorite. Geochimica et Cosmochimica Acta 43:14751498.
  • Stolper E., McSween H. Y. Jr., and Hays J. F. 1979. A petrogenetic model of the relationship among achondritic meteorites. Geochimica et Cosmochimica Acta 43:589602.
  • Takahashi E. 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+, and Mg2+ between olivine and silicate melts: Compositional dependence of partition coefficient. Geochimica et Cosmochimica Acta 42:18291844.
  • Taylor L. A., Nazarov M. A., Shearer C. K., McSween H. Y. Jr., Cahill J., Neal C. R., Ivanova M. A., Barsukova L. D., Lentz R. C., Clayton R. N., and Mayeda T. K. 2002. Martian meteorite Dhofar 019: A new shergottite. Meteoritics & Planetary Science 37:11071128.
  • Thaisen K. G. and Taylor L. A. 2008. Fusion crust on meteorites: Simple melting or petrogenetic signature? (abstract #1391). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Toplis M. J. 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology 149:2239.
  • Treiman A. H. 2003. Chemical compositions of Martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics & Planetary Science 38:18491864.
  • Treiman A. H., Gleason J. D., and Bogard D. D. 2000. The SNC meteorites are from Mars. Planetary and Space Science 48:12131230.
  • Usui T., McSween H. Y. Jr., and Floss C. 2008. Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochimica et Cosmochimica Acta 72:17111730.
  • Wadhwa M., Lentz R. C. F., McSween H. Y. Jr., and Crozaz G. 2001. A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites. Meteoritics & Planetary Science 36:195208.
  • Wänke H. 1991. Chemistry, accretion, and evolution of Mars. Space Science Reviews 56:18.
  • Weisberg M. K., Smith C., Benedix G., Herd C. D. K., Righter K., Haack H., Yamaguchi A., Chennaoui Aoudjehane H., and Grossman J. N. 2010. The Meteoritical Bulletin, No. 97. Meteoritics & Planetary Science 45:145.
  • Wones D. R. and Gilbert M. C. 1969. Fayalite-magnetite-quartz assemblage between 600° and 800 °C. American Journal of Science 267A:480488.
  • Wood B. J. 1991. Oxygen barometry of spinel peridotites. In Oxide minerals, edited by LindsleyD. H. Reviews in Mineralogy, vol. 25, pp. 417431.