SEARCH

SEARCH BY CITATION

References

  • Ackermann H. D., Godson R. H., and Watkins J. S. 1975. A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona. Journal of Geophysical Research 80:765775.
  • Anderson J. L. B., Schultz P. H., and Heineck J. T. 2004. Experimental ejection angles for oblique impacts: Implications for the subsurface flow-field. Meteoritics & Planetary Science 39(2):303320.
  • Artemieva N. A. 2002. Tektite origin in oblique impact: Numerical modelling. In Impacts in Precambrian shields, edited by PladoJ. and PesonenL. Berlin: Springer Verlag. pp. 257276.
  • Artemieva N. 2007. Possible reasons of shock melt deficiency in the Bosumtwi drill cores. Meteoritics & Planetary Science 42:883894.
  • Artemieva N. 2008. Tektites: Model versus reality (abstract #1651). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Artemieva N. and Ivanov B. 2004. Launch of Martian meteorites in oblique impacts. Icarus 171:84101.
  • Artemieva N. and Pierazzo E. 2009. The Canyon Diablo impact event: Projectile motion through the atmosphere. Meteoritics & Planetary Science 44:2542.
  • Artemieva N. and Shuvalov V. 2001. Motion of a fragmented meteoroid through the planetary atmosphere. Journal of Geophysical Research 106:32973309.
  • Artemieva N., Wünnemann K., Meyer C., Reimold W. U., and Stöffler D. 2009. Ries Crater and suevite revisited: Part II. Modelling (abstract # 1526). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Barringer D. M. 1905. Coon Mountain and its crater. Proceedings of the Academy of Natural Sciences of Philadelphia 57:861886.
  • Barringer D. M. 1909. Meteor Crater (formerly called Coon Mountain or Coon Butte), in northern central Arizona. Read before National Academy of Science, Princeton University. Privately printed. 24 pages + 18 plates.
  • Bass J. D., Svendsen B., and Ahrens T. J. 1987. The temperature of shock compressed iron. In High-pressure research in mineral physics, edited by ManghnaniM. H. and SyonoY. Tokyo/Washington D.C.: Terra Scientific Pub. Co., American Geophysical Union. pp. 393402.
  • Bass J. D., Ahrens T. J., Abelson J. R., and Hua T. 1990. Shock temperature measurements in metals: New results for an Fe alloy. Journal of Geophysical Research 95(B13):21,76721,776.
  • Bjork R. L. 1961. Analysis of the formation of Meteor Crater, Arizona: A preliminary report. Journal of Geophysical Research 66(10):33793387.
  • Bland P. and Artemieva N. 2003. The impact rate of 102–1012 kg objects at the Earth’s surface. Nature 424:288291.
  • Blau P. J., Axon H. J., and Goldstein J. I. 1973. Investigation of the Canyon Diablo metallic spheroids and their relationship to the breakup of the Canyon Diablo meteorite. Journal of Geophysical Research 78(2) pp. 363374.
  • Boothroyd R.G. 1971. Flowing gas-solids suspensions. London: Chapman and Hall. 289 p.
  • Brett R. 1968. Opaque minerals in drill cuttings from Meteor Crater, Arizona. USGS Professional Paper 600-D: 179180.
  • Brown J. M., and McQueen R. G. 1986. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. Journal of Geophysical Research 91:74857494.
  • Bryan J. B., Burton D. E., Cunningham M. E., and Lettis A. Jr. 1978. A two-dimensional computer simulation of hypervelocity impact cratering: Some preliminary results for Meteor Crater, Arizona. Proceedings, 9th Lunar and Planetary Science Conference. pp. 39313964.
  • Chao E. C. T., Shoemaker E. M., and Madsen B. M. 1960. First natural occurrence of coesite. Science 132:220222.
  • Chao E. C.T., Fahey J. J., Littler J., and Milton D. J. 1962. Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research 67:419421.
  • Cintala M. J., Berthoud L., and Hörz F. 1999. Ejecta-velocity distribution from impacts into coarse-grained sand. Meteoritics & Planetary Science 34:605623.
  • Croft S. K. 1980. Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation. Proceedings, 11th Lunar and Planetary Science Conference. pp. 23472378.
  • Dienes J. K. and Walsh J. M. 1970. Theory of impact: Some general principles and the method of Eulerian codes. In High-velocity impact phenomena, edited by KinslowR. New York: Academic Press. pp. 82104.
  • Ebel D. S., and Grossman L. 2005. Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology 33:293296, doi:10.1130/G21136.1 .
  • Engelhardt W. von. 1997. Suevite breccia of the Ries impact crater, Germany: Petrography, chemistry, and shock metamorphism of crystalline rock clasts. Meteoritics & Planetary Science 32:545554.
  • Gibbons R. V., Morris R. V., and Hörz F. 1975. Petrographic and ferromagnetic resonance studies of experimentally shocked regolith analogs. Proceedings, 6th Lunar Science Conference. pp. 31433171.
  • Grady M. M. 2000. Catalogue of meteorites, 5th ed. Cambridge: Cambridge University Press. 689 p. (plus CD-ROM).
  • Grant J. A., and Schultz P. H. 1993. Erosion of ejecta at Meteor Crater, Arizona. Journal of Geophysical Research 98:15,03315,047.
  • Grieve R. A. F. and Garvin J. B. 1984. A geometric model for excavation and modification at terrestrial simple impact craters. Journal of Geophysical Research 89:11,56111,572.
  • Grieve R. A. F., Ames D. E., Morgan J. V., and Artemieva N. 2010. The evolution of the Onaping Formation at the Sudbury impact structure. Meteoritics & Planetary Science 45:759782.
  • Hager D. 1953. Crater mound (Meteor Crater), Arizona, a geologic feature. Bulletin of American Association of Petroleum Geologists 37:821857.
  • Harlow F. H. and Amsden A. A. 1975. Numerical calculations of multiphase fluid flow. Journal of Computational Physics 17:1952.
  • Heymann D., Lipschutz M. E., Nielsen B., and Anders E. 1966. Canyon Diablo meteorites: Metallographic and mass spectrometric study of 56 fragments. Journal of Geophysical Research 71:619641.
  • Holsapple K. A. and Schmidt R. M. 1982. On the scaling of crater dimensions. 2. Impact processes. Journal of Geophysical Research 87(B3):18491870.
  • Hörz F., Mittlefehldt D. W., See T. H., and Galindo C. 2002. Petrographic studies of the impact melts from Meteor Crater, Arizona, USA. Meteoritics & Planetary Science 37:501531.
  • Hörz F., Cintala M. J., See T. H., and Le L. 2005. Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteoritics & Planetary Science 40:13291346.
  • Ivanov B. A., Langenhorst F., Deutsch A., and Hornemann U. 2002. How strong was impact-induced CO2 degassing in the Cretaceous-Tertiary event? Numerical modelling of shock recovery experiments. In Catastrophic events and mass extinctions: Impacts and beyond, edited by KoeberlC. and MacleodK. G. GSA Special Paper 356. Boulder, Colorado: Geological Society of America. pp. 587594.
  • Johnson P. C., Stein B. A., and Davis R. S. 1962. Temperature dependence of shock-induced phase transformations in iron. Journal of Applied Physics 33:557561.
  • Kenkmann T., Patzschke M., Thoma K., Schäfer F., Wünnemann K., Deutsch A., and MEMIN-team. 2007. Deformation of sandstone in meso-scale hypervelocity cratering experiments (abstract #1527). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Kieffer S. W. 1971. Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona. Journal of Geophysical Research 76:54495473.
  • Kieffer S. W. and Simonds C. H. 1980. The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics & Space Physics 18:143181.
  • Klein J., Middleton R., Xue S., Herzog G. F., Masarik J., and Reedy R.C. 1995. 59Ni in Canyon Diablo spheroids (abstract). 26th Lunar and Planetary Science Conference. pp. 763764.
  • Koeberl C. 1994. Tektite origin by hypervelocity asteroidal or cometary impact: Target rocks, source craters, and mechanisms. In Large meteorite impacts and planetary evolution, edited by DresslerB. O., GrieveR. A. F., and SharptonV. L. GSA Special Paper 293. Boulder, Colorado: Geological Society of America. pp. 133151.
  • Kring D. 2007. Guidebook to the Geology of Barringer Meteorite Crater (a.k.a. Meteor Crater). LPI Contribution 1355, 154 p. Available online at http://www.lpi.usra.edu/publications/books/barringer_crater_guidebook/. Accessed April 13, 2011.
  • Leya I., Wieler R., Ma P., Schnabel C., and Herzog G. F. 2002. Pre-atmospheric depths and thermal histories of Canyon Diablo spheroids. Meteoritics & Planetary Science 37:10151025.
  • Ma P., Aggrey K., Tonzola C., Schnabel C., de Nicola P., Herzog G. F., Wasson J. T., Glass B. P., Brown L., Tera F., Middleton R., and Klein J. 2004. Beryllium-10 in Australasian tektites: Constraints on the location of the source crater. Geochimica et Cosmochimica Acta 68:38833896.
  • Maxwell D. E. 1977. Simple Z model for cratering, ejection, and the overturned flap. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York/Oxford/Sydney/Frankfurt: Pergamon Press. pp. 10031008.
  • Melosh H. J. 1989. Impact cratering: A geologic process. New York/Oxford: Oxford University Press, Clarendon Press. 245 p.
  • Melosh H. J. 2007. A hydrocode equation of state for SiO2. Meteoritics & Planetary Science 42:20792098.
  • Melosh H. J., and Collins G. S. 2005. Meteor Crater formed by low-velocity impact. Nature 434:157.
  • Melosh H. J., and Vickery A. M. 1991. Melt droplet formation in energetic impact events. Nature 350:494497.
  • Michlovich E. S., Vogt S., Masarik J., Reedy R. C., Elmore D., and Lipschutz M. E. 1994. Aluminum-26, 10Be, and 36Cl depth profiles in the Canyon Diablo iron meteorite. Journal of Geophysical Research 99(E11):23,18723,194.
  • Mittlefehldt D. W., See T. H., Scott E. R. D., and Mertzman S. A. 2005. Geochemistry of target rocks, impact-melt particles, and metallic spherules from Meteor Crater, Arizona: Empirical evidence on the impact process. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. GSA Special Paper 384. Boulder. Colorado: Geological Society of America. pp. 367390.
  • Moore C. B., Birrell P. J., and Lewis C. F. 1967. Variations in the chemical and mineralogical composition of rim and plains specimens of the Canyon Diablo meteorite. Geochimica et Cosmochimica Acta 31:18851892.
  • Morgan J. W., Huguchi H., Ganapathy R., and Anders E. 1975. Meteoritic material in four terrestrial meteorite craters. Proceedings, 6th Lunar Science Conference. pp. 16091623.
  • Nininger H. H. 1949. Oxidation studies at Barringer crater, metal-center pellets and oxide droplets. Philadelphia: American Philosophical Society Yearbook. pp. 126130.
  • Nininger H. H. 1950. Structure and composition of Canyon Diablo meteorites as related to zonal distribution of fragments. Popular Astronomy 58:169172.
  • Nininger H. H. 1954. Impactite slag at Barringer Crater. American Journal of Science 252:277290.
  • Nininger H. H. 1956. Arizona’s meteorite crater. Denver, Colorado: World Press Inc. 232 p.
  • Nishiizumi K., Kohl C. P., Shoemaker E. M., Arnold J. R., Klein J., Fink D., and Middleton R. 1991. In situ 10Be-25Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55:26992703.
  • Öpik E. J. 1936. Researches on the physical theory of meteor phenomena. I. Theory of the formation of meteor craters. Publications of the Astronomical Observatory of the University of Tartu 28:312.
  • Osinski G. R. 2003. Impact glasses in fallout suevites from the Ries impact structure, Germany: An analytical SEM study. Meteoritics & Planetary Science 38:16411667.
  • Passey Q. R. and Melosh H. J. 1980. Effects of atmospheric breakup on crater field formation. Icarus 42:211233.
  • Phillips F. M., Zreda M. G., Smith S. S., Elmore D., Kubik P. W., Dorn R. I, and Roddy D. J. 1991. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochimica et Cosmochimica Acta 55:26952698.
  • Pierazzo E., and Melosh H. J. 2000. Understanding of oblique impacts from experiments, observations, and modeling. Annual Review of Earth and Planetary Sciences 28:141167.
  • Pierazzo E., Vickery A. M., and Melosh H. J. 1997. A re-evaluation of impact melt production. Icarus 127:408423.
  • Pierazzo E., Kring D. A., and Melosh H. J. 1998. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. Journal of Geophysical Research 103(E12):28,60728,625.
  • Pierazzo E., Artemieva N. A., and Ivanov B. A. 2005. Starting conditions for hydrothermal systems underneath Martian craters: Hydrocode modeling. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. GSA Special Paper 384. Boulder, Colorado: Geological Society of America. pp. 443457.
  • Pierazzo E., Artemieva N., Asphaug E., Baldwin E., Cazamias J., Coker R., Collins G. S., Crawford D. A., Davison T., Elbeshausen D., Holsapple K. A., Housen K. R., Korycansky D. G., and Wünnemann K. 2008. Validation of numerical codes for impact and explosion cratering. Meteoritics & Planetary Science 43:19171938.
  • Poelchau M. H., Kenkmann Th., and Kring D. A. 2009. Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research E 114(E1):E01006, doi:10.1029/2008JE003235.
  • Ramsey M. S. 2002. Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end-member deconvolution for space borne thermal infrared data on Earth and Mars. Journal of Geophysical Research 107(E9):5029, doi 10.1029/2001JE001827.
  • Rinehart J. S. 1958. Distribution of meteoritic debris about the Arizona meteorite crater. Smithsonian Contributions to Astrophysics 2:145159.
  • Roddy D. J. 1978. Pre-impact geological conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults and walls at Meteor Crater, Arizona. Proceedings, 9th Lunar and Planetary Science Conference. pp. 38913930.
  • Roddy D. J., Boyce J. M., Colton G. W., and Dial A. L. Jr. 1975. Meteor crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Proceedings, 6th Lunar Science Conference. pp. 26212644.
  • Roddy D. J., Schuster S. H., Kreyenhagen K. N., and Orphal D. L. 1980. Computer code simulations of the formation of Meteor Crater, Arizona: Calculations MC-1 and MC-2. Proceedings, 11th Lunar and Planetary Science Conference. pp. 22752308.
  • Schnabel C., Pierazzo E., Xue S., Herzog G. F., Masarik J., Creewell R. G., di Tada M. L., Liu K., and Fifield L. K. 1999. Shock melting of the Canyon Diablo impactor: Constraints from nickel-59 contents and numerical modeling. Science 285:8588.
  • Schultz P. H. 1992. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. Journal of Geophysical Research 97:16,18316,248.
  • Schultz P. H., and Gault D. E. 1985. Clustered impacts—Experiments and implications. Journal of Geophysical Research 90:37013732.
  • See T. H., Hörz F., Mittlefehldt D. W., Varley L., Mertzman S., and Roddy D. 2002. Major Element Analyses of the Target Rocks at Meteor Crater, Arizona. NASA Technical Memorandum TM-NASA/TM-2002-210787. Hanover, MD: NASA Center for AeroSpace Information. 23 p.
  • Shoemaker E. M. 1960. Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona. In Structure of the Earth’s crust and deformation of rocks. ??????. Copenhagen: International Geological Congress. pp. 418434.
  • Shoemaker E. M. 1962. Interpretation of lunar craters. In Physics and astronomy of the moon, edited by KopalZ. New York/London: Academic Press. pp. 283359.
  • Shoemaker E. M. 1963. Impact mechanics at Meteor Crater Arizona. In The moon, meteorites and comets, edited by MiddlehurstB. M. and KuiperG. P. Chicago: The University of Chicago Press. pp. 301336.
  • Shoemaker E. M. 1974. Synopsis of the geology of Meteor Crater. In Guidebook to the geology of Meteor Crater, Arizona, edited by ShoemakerE. M. and KiefferS. W. 37th Annual Meeting of Meteoritical Society. Tempe, Arizona: Arizona State University Center for Meteorite Studies. pp. 111.
  • Shoemaker E. M. and Kieffer S. W. 1974. Guidebook to the geology of Meteor Crater, Arizona. 37th Annual Meeting of Meteoritical Society. Tempe, Arizona: Arizona State University Center for Meteorite Studies. 66 p.
  • Shuvalov V. V. 1999. Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect. Shock Waves 9:381390.
  • Shuvalov V. V. and Dypvik H. 2004. Ejecta formation and crater development of the Mjølnir impact. Meteoritics & Planetary Science 39:467479.
  • Shuvalov V. V. and Trubetskaya I. A. 2007. Aerial bursts in the terrestrial atmosphere. Solar System Research 41:220230.
  • Smit J. 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27:75113.
  • Stahle V. 1972. Impact glasses from the suevite of Nördlingen Ries. Earth and Planetary Science Letters 17:275293.
  • Steel D. 1998. Distributions and moments of asteroid and comet impact speeds upon the Earth and Mars. Planetary and Space Science 46:473478.
  • Sutton S. R. 1985. Thermoluminescence measurements on shock-metamorphosed sandstone and dolomite from Meteor Crater, Arizona: 2. Thermoluminescence age of Meteor Crater. Journal of Gephysical Research 90:36903700.
  • Thompson S. L. and Lauson H. S. 1972. Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state. Report SC-RR-71 0714. Albuquerque: Sandia National Laboratory. 119 p.
  • Trunin R. F., Gudarenko L. F., Zhernokletov M. V., and Simakov G. V. 2001. Experimental data on shock compression and adiabatic expansion of condensed matter. ???: Russian Federal Nuclear Center-VNIIEF. 446 p.
  • Turtle E. P. and Pierazzo E. 2001. Thickness of a European ice shell from impact crater simulations. Science 294:13261328.
  • Valentine G. A. and Wohletz K. H. 1989. Numerical models of Plinian eruption columns and pyroclastic flows. Journal of Geophysical Research 94:18671887.
  • Wasson J. T. 1968. Concentration of nickel, gallium, germanium, and iridium in Canyon Diablo and other Arizona octahedrites. Journal of Geophysical Research 73:32073211.
  • Wasson J. T. and Ouyang X. 1990. Compositional range in Canyon Diablo meteoroid. Geochimica et Cosmochimica Acta 54:31753183.
  • Wünnemann K., Collins G. S., and Osinski G. R. 2008. Numerical modeling of impact melt production in porous rocks. Earth and Planetary Science Letters 269:530539.
  • Xue S., Herzog G. F., Hall G. S., Klein J., Middleton R., and Juenemann D. 1995. Stable nickel isotopes and cosmogenic beryllium-10 and aluminum-26 in metallic spheroids from Meteor Crater, Arizona. Meteoritics 30:303310.
  • Zel’dovich Ya. B. and Raizer Yu. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, edited by HayesW. D. and ProbsteinR. F. New York: Academic Press. 916 p.