SEARCH

SEARCH BY CITATION

References

  • Amsden A. A., Ruppel H. M., and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Report LA-8095. Los Alamos: Los Alamos National Laboratory. 101 p.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A. 2007. Laboratory impacts into dry and wet sandstone with and without an overlying layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science 42:19051914.
  • Barnouin-Jha O. S. and Schultz P. H. 1996. Ejecta entrainment by impact-generated ring vortices: Theory and experiments. Journal of Geophysical Research 101:21,09921,115.
  • Burchell M. J. and Whitehorn L. 2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society 341:192198.
  • Burchell M. J., Galloway J. A., Bunch A. W., and Brandão P. F. B.. 2003. Survivability of bacteria ejected from icy surfaces after hypervelocity impact. In Origins of life and evolution of the biosphere, edited by SchwartzA. W. Dordrecht: Kluwer Academic Publishers. pp. 5374.
  • Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., Ennico K., Hermalyn B., Marshall W., Ricco A., Elphic R. C., Goldstein D., Summy D., Bart G. D., Asphaug E., Korycansky D., Landis D., and Sollitt L. 2010. Detection of water in the LCROSS ejecta plume. Science 330:463468.
  • Collins G. S., Melosh H. J., and Ivanov B. A. 2004. Modelling damage and deformation in impact simulations. Meteoritics & Planetary Science 39:27231.
  • Collins G. S., Kenkmann T., Osinski G. R., and Wünnemann K. 2008. Mid-sized complex crater formation in mixed crystalline targets: Insight from modeling and observation. Meteoritics & Planetary Science 43:19551977.
  • Dypvik H., Burchell M. J., and Claeys P. 2004. Impacts into marine and icy environments––A short review. In Cratering in marine environments and on ice, edited by DypvikH., BurchellM. J., and ClaeysP. Berlin: Springer. pp. 120.
  • Earth Impact Database. http://www.unb.ca/passc/ImpactDatabase. Accessed April 12, 2011.
  • Goldin T. J., Wünnemann K., Melosh H. J., and Collins G. S. 2006. Hydrocode modeling of the Sierra Madera impact structure. Meteoritics & Planetary Science 21:19471958.
  • Holsapple K. A. 1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Science 21:333373.
  • Holsapple K. A. and Housen K. R. 2007. A crater and its ejecta: An interpretation of deep impact. Icarus 187:345356.
  • Ivanov B. A. 2006. Earth/Moon impact rate comparison: Searching constraints for lunar secondary/primary cratering proportion. Icarus 183:504507.
  • Ivanov B. A., Deniem D., and Neukum G. 1997. Implementation of dynamic strength models into 2D hydrocodes, applications for atmospheric break-up and impact cratering. International Journal of Impact Engineering 17:375386.
  • Kenkmann T., Thoma K., Deutsch A., and MEMIN-Team. 2006. Hypervelocity impact into dry and wet sandstone (abstract #1587). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Kenkmann T., Patzschke M., Thoma K., Schäfer F., Wünnemann K., Deutsch A., and MEMIN-Team. 2007. Deformation of sandstone in meso-scale hypervelocity cratering experiments (abstract #1527). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Kieffer S. W. 1971. Shock metamorphm of the Coconino sandstone at Meteor Crater, Arizona. Journal of Geophysical Research 76:54495473.
  • Kieffer S. W. and Simonds C. H. 1980. The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics and Space Physics 18:143181.
  • Langenhorst F. and Deutsch A. 1994. Shock experiments on preheated α- and β-quartz: I. Optical and density data. Earth and Planetary Science Letters 125:407420.
  • Love S. G., Hörz F., and Brownlee D. E. 1993. Target porosity effects in impact cratering and collisional disruption. Icarus 105:216224.
  • Lundborg N. 1968. Strength of rock-like materials. International Journal of Rock Mechanics and Mining Sciences 5:427454.
  • Maxwell D. E. 1977. Simple Z model of cratering, ejection, and the overturned flap. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 10031008.
  • Melosh H. J. 1989. Impact cratering: A geological process. New York: Oxford University Press. 245 p.
  • Pierazzo E., Artemieva N., Asphaug E., Baldwin E. C., Cazamias J., Coker R., Collins G. S., Crawford D. A., Davison T., Elbeshausen D., Holsapple K. A., Housen K. R., Korycansky D. G., and Wünnemann K. 2008. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science 43:19171938.
  • Pierazzo E., Collins G. S., Holsapple K. A., Housen K. R., Korycansky D. G., Plesko C. S., Price M. C., and Wünnemann K. 2010. Impact hydrocode benchmark and validation project: Impacts into cohesionless soil (abstract# 2048). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Poelchau M. H., Deutsch A., Kenkmann T., Hoerth T., Schäfer F., Thoma K., and MEMIN-Team. 2011. Experimental impact cratering into sandstone: A MEMIN-Progress Report (abstract# 1824). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Polanskey C. A. and Ahrens T. J. 1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus 87:140155.
  • Schäfer F., Thoma K., Behner T., Kenkmann T., Wünnemann K., and MEMIN-Team. 2006. Impact tests on dry and wet sandstone. Proceedings, 1st International Conference on Impact Cratering in the Solar System, ESA Special Publication #612.
  • Schultz P. H., Eberhardy C. A., Ernst C. M., A’Hearn M. F., Sunshine J. M., and Lisse C. M. 2007. The deep impact oblique impact cratering experiment. Icarus 190:295333.
  • Shoemaker E. M. 1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science 261:668682.
  • Tillotson J. M. 1962. Metallic equation of state for hypervelocity impact. General atomic report GA-3216. San Diego: Advanced Research Project Agency. 141 p.
  • Weibull W. 1951. A statistical distribution function of wide applicability. Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 183:293297.
  • Wünnemann K., Collins G. S., and Osinski G. R. 2008. Numerical modelling of impact melt production in porous rocks. Earth and Planetary Science Letters 269:529538.
  • Wünnemann K. and Ivanov B. A. 2003. Numerical modelling of the impact crater depth-diameter dependence in an acoustically fluidised target. Planetary and Space Science 51:831845.
  • Wünnemann K., Collins G. S., and Melosh H. J. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514527.
  • Wünnemann K., Nowka D., Collins G. S., Elbeshausen D., and Bierhaus M. 2011. Scaling of impact crater formation on planetary surfaces––Insights from numerical modeling. Proceedings of the 11th Hypervelocity Impact Symposium, Freiburg (in press).