SEARCH

SEARCH BY CITATION

References

  • Abreu N. M. and Brearley A. J. 2010. Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta 74:11461171.
  • Alexander C. M. O’D., Barber D. J., and Hutchison R. 1989. The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta 53:30453057.
  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J. 2008. The formation conditions of chondrules and chondrites. Science 320:16171619.
  • Amelin Y., Krot A. N., Hutcheon I. D., and Ulyanov A. A. 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:16781683.
  • Bizzarro M., Baker J. A., and Haack H. 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431:275278.
  • Bouvier A. and Wadhwa M. 2010. The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geoscience 3:637641.
  • Brennecka G. A., Weyer S., Wadhwa M., Janney P. E., Zipfel J., and Anbar A. D. 2010. 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science 327:449451.
  • Chaussidon M., Libourel G., and Krot A. N. 2008. Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochimica et Cosmochimica Acta 72:19241938.
  • Cherniak D. J. and Watson E. B. 1994. A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochimica et Cosmochimica Acta 58:51795190.
  • Ciesla F. J. 2007. Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318:613615.
  • Clayton R. N. 1993. Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences 21:115149.
  • Cole D. R. and Chakraborty S. 2001. Rates and mechanisms of isotopic exchange. In Stable isotope geochemistry, edited by Valley J. W. and Cole D. R. Reviews in Mineralogy and Geochemistry, vol. 43. Washington DC: Mineralogical Society of America. pp. 83223.
  • Connelly J. N., Amelin Y., Krot A. N., and Bizzarro M. 2008. Chronology of the solar system’s oldest solids. The Astrophysical Journal 675:L121L124.
  • Connolly H. C. Jr. and Love S. G. 1998. The formation of chondrules: Petrologic tests of the shock wave model. Science 280:6267.
  • Cuzzi J. N. and Alexander C. M. O’D. 2006. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441:483485.
  • Cuzzi J. N., Hogan R. C., and Shariff K. 2008. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal 687:14321447.
  • Cuzzi J. N., Hogan R. C., and Bottke W. F. 2010. Towards initial mass functions for asteroids and Kuiper Belt objects. Icarus 208:518538.
  • Feigelson E. D. and Montmerle T. 1999. High-energy processes in young stellar objects. Annual Review of Astronomy and Astrophysics 37:363408.
  • Giletti B. J. and Casserly J. E. D. 1994. Strontium diffusion kinetics in plagioclase feldspars. Geochimica et Cosmochimica Acta 58:37853793.
  • Grossman J. N. 1988. Formation of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F. and Mathews M. S. Tucson, Arizona: The University of Arizona Press. pp. 680696.
  • Grossman J. N. and Brearley A. J. 2005. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science 40:87122.
  • Grossman J. N., Alexander C. M. O’D., Wang J., and Brearley A. J. 2000. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics & Planetary Science 35:467486.
  • Grossman J. N., Alexander C. M. O’D., Wang J., and Brearley A. J. 2002. Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteoritics & Planetary Science 37:4973.
  • Huss G. R., MacPherson G. J., Wasserburg G. J., Russell S. S., and Srinivasan G. 2001. 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. Meteoritics & Planetary Science 36:975997.
  • Hutcheon I. D. and Hutchison R. 1989. Evidence from the Semarkona ordinary chondrite for Al-26 heating of small planets. Nature 337:238241.
  • Hutcheon I. D., Marhas K. K., Krot A. N., Goswami J. N., and Jones R. H. 2009. 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation. Geochimica et Cosmochimica Acta 73:50805099.
  • Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I., and Palme H. 2008. 26Al-26Mg and 207 Pb-206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/27Al ratio reinstated. Earth and Planetary Science Letters 272:353364.
  • Kimura M., Grossman J. N., and Weisberg M. K. 2008. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteoritics & Planetary Science 43:11611177.
  • Kita N. T., Nagahara H., Togashi S., and Morishita Y. 2000. A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta 64:39133922.
  • Kita N. T., Mostefaoui S., Liu Y. Z., Togashi S., and Morishita Y. 2003. Application of high precision SIMS 26Al-26Mg analyses to the early solar system chronology. Applied Surface Science 203–204:806809.
  • Kita N. T., Lin Y., Kimura M., and Morishita Y. 2004a. The 26Al-26Mg chronology of a type C CAI and POIs in Ningqiang carbonaceous chondrite (abstract #1471). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Kita N. T., Kimura M., and Morishita Y. 2004b. The Al-Mg system in chondrules from the most primitive H chondrite Y82038. Papers presented to the 28th Symposium on Antarctic Meteorites. pp. 3334. June 1-3, 2004, National Institute of Polar Research, Tokyo.
  • Kita N. T., Huss G. R., Tachibana S., Amelin Y., Nyquist L. E., and Hutcheon I. D. 2005a. Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. ASP Conference Series, vol. 341. San Francisco, California: Astronomical Society of the Pacific. pp. 558587.
  • Kita N. T., Tomomura S., Nagahara H., Tachibana S., and Morishita Y. 2005b. Correlation between aluminum-26 ages and bulk Si/Mg ratios for chondrules from LL3.0-3.1 chondrites (abstract #1750). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Founelle J. H., and Valley J. W. 2010. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta 74:66106635.
  • Krot A. N., Scott E. R. D., and Zolensky M. E. 1995. Mineralogical and chemical modifications of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30:748775.
  • Krot A. N., Amelin Y., Cassen P., and Meibom A. 2005. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature 436:989992.
  • Krot A. N., Libourel G., and Chaussidon M. 2006a. Oxygen isotope compositions of chondrules in CR chondrites. Geochimica et Cosmochimica Acta 70:767779.
  • Krot A. N., Yurimoto H., McKeegan K. D., Leshin L., Chaussidon M., Libourel G., Yoshitake M., Huss G., Guan Y., and Zanda B. 2006b. Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie der Erde 66:269276.
  • Krot A. N., Amelin Y., Bland P., Ciesla F. J., Connelly J., Davis A. M., Huss G. R., Hutcheon I. D., Makide K., Nagashima K., Nyquist L. E., Russell S. S., Scott E. R. D., Thrane K., Yurimoto H., and Yin Q. Z. 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta 73:49634997.
  • Krot A. N., Nagashima K., Yoshitake M., and Yurimoto H. 2010. Oxygen isotopic compositinos of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC02675 (CBb) and QUE 94627 (CBb). Geochimica et Cosmochimica Acta 74:21902211.
  • Kunihiro T., Rubin A. E., McKeegan K. D., and Wasson J. T. 2004. Initial Al-26/Al-27 in carbonaceous-chondrite chondrules: Too little Al-26 to melt asteroids. Geochimica et Cosmochimica Acta 68:29472957.
  • Kurahashi E., Kita N. T., Nagahara H., and Morishita Y. 2008a. Al-26-Mg-26 systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta 72:38653882.
  • Kurahashi E., Kita N. T., Nagahara H., and Morishita Y. 2008b. Al-26-Mg-26 systematics and petrological study of chondrules in CR chondrites (abstract). Geochimica et Cosmochimica Acta 72:A504.
  • LaTourrette T. and Wasserburg G. J. 1998. Mg diffusion in anorthite: Implications for the formation of early solar system planetesimals. Earth and Planetary Science Letters 158:91108.
  • Libourel G. and Chaussidon M. 2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters 301:921.
  • Libourel G. and Krot A. N. 2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters 254:18.
  • MacPherson G. J., Davis A. M., and Zinner E. K. 1995. The distribution of aluminum-26 in the early Solar System—A reappraisal. Meteoritics 30:365386.
  • MacPherson G. J., Bullock E. S., Jenny P. E., Kita N. T., Ushikubo T., Davis A. M., Wadhwa M., and Krot A. N. 2010a. Early solar nebula condensates with canonical, not supracanonical, initial 26Al/27Al ratios. The Astrophysical Journal 711:L117L121.
  • MacPherson G. J., Kita N. T., Ushikubo T., Bullock E. S., and Davis A. M. 2010b. High-precision 26Al/27Al isochron microchronology of the earliest solar system (abstract #2356). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Mostefaoui S., Kita N. T., Tachibana S., Togashi S., Nagahara H., and Morishita Y. 2002. The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteoritics & Planetary Science 37:421438.
  • Nagashima K., Krot A. N., and Chaussidon M. 2007. Aluminum-magnesium isotope systematics of chondrules from CR chondrites (abstract). Meteoritics & Planetary Science 42:A115.
  • Nagashima K., Krot A. N., and Huss G. R. 2008. 26Al in chondrules from CR carbonaceous chondrites (abstract #2224). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Nakamura T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N. T., Valley J. W., Zolensky M. E., Kakazu Y., Sakamoto K., Mashio E., Uesugi K., and Nakano T. 2008. Chondrule-like objects in short-period comet 81P/Wild 2. Science 321:16641667.
  • Nakashima D., Ushikubo T., Zolensky M. E., Weisberg M. K., Joswiak D. J., Brownlee D. E., Matrajt G., and Kita N. T. 2011a. High precision oxygen three isotope analysis of Wild-2 particles and anhydrous chondritic interplanetary dust particles (abstract #1240). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Nakashima D., Ushikubo T., Gowda R. N., Kita N. T., Valley J. W., and Nagao K. 2011b. Ion microprobe analyses of oxygen three isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk. Meteoritics & Planetary Science 46:857874.
  • Nishiizumi K. 2004. Preparation of 26Al AMS standards. Nuclear Instruments and Methods in Physics Research B 223–224:388392.
  • Norris T. L., Gancarz A. J., Rokop D. J., and Thomas K. W. 1983. Half-life of 26Al. Journal of Geophysical Research 88:B331B333.
  • Roselieb K. and Jambon A. 2002. Tracer diffusion of Mg, Ca, Sr, and Ba in Na-aluminosilicate melts. Geochimica et Cosmochimica Acta 66:109123.
  • Rudraswami N. G. and Goswami J. N. 2007. Al-26 in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth and Planetary Science Letters 257:231244.
  • Rudraswami N. G., Goswami J. N., Chattopadhyay B., Sengupta S. K., and Thapliyal A. P. 2008. Al-26 records in chondrules from unequilibrated ordinary chondrites: II. Duration of chondrule formation and parent body thermal metamorphism. Earth and Planetary Science Letters 274:93102.
  • Russell S. S., Srinivasan G., Huss G. R., Wasserburg G. J., and MacPherson G. J. 1996. Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science 273:757762.
  • Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T., and Nagahara H. 2011. Oxygen isotopic measurements of phenocrysts in chondrules from the primitive carbonaceous chondrite Yamato-81020: Evidence for two distinct oxygen isotope reservoirs (abstract #1426). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W. 2009. Oxygen isotopic compositions of phenocrysts in chondrules from the primitive carbonaceous chondrite Acfer 094 (abstract #1383). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Ushikubo T., Kimura M., Nakashima D., and Kita N. T. 2010. A combined study of the Al-Mg systematics and O isotope ratios of chondrules from the primitive carbonaceous chondrite Acfer 094 (abstract #1491). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W. 2011. Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules from Acfer 094 carbonaceous chondrite (abstract #1183). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Villeneuve J., Chaussidon M., and Libourel G. 2009. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325:985988.
  • Whattam S. A., Hewins R. H., Cohen B. A., Seaton N. C., and Prior D. J. 2008. Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates? Earth and Planetary Science Letters 269:200211.
  • Yamashita K., Maruyama S., Yamakawa A., and Nakamura E. 2010. 53Mn–53Cr chronometry of CB chondrite: Evidence for uniform distribution of 53Mn in the early solar system. The Astrophysical Journal 723:204224.
  • Zolensky M. E., Zega T. J., Yano H., Wirick S., Westphal A. J., Weisberg M. K., Weber I., Warren J. L., Velbel M. A., Tsuchiyama A., Tsou P., Toppani A., Tomioka N., Tomeoka K., Teslich N., Taheri M., Susini J., Stroud R., Stephan T., Stadermann F. J., Snead C. J., Simon S. B., Simionovici A., See T. H., Robert F., Rietmeijer F. J., Rao W., Perronnet M. C., Papanastassiou D. A., Okudaira K., Ohsumi K., Ohnishi I., Nakamura-Messenger K., Nakamura T., Mostefaoui S., Mikouchi T., Meibom A., Matrajt G., Marcus M. A., Leroux H., Lemelle L., Le L., Lanzirotti A., Langenhorst F., Krot A. N., Keller L. P., Kearsley A. T., Joswiak D., Jacob D., Ishii H., Harvey R., Hagiya K., Grossman L., Grossman J. N., Graham G. A., Gounelle M., Gillet P., Genge M. J., Flynn G., Ferroir T., Fallon S., Fakra S., Ebel D. S., Dai Z. R., Cordier P., Clark B., Chi M., Butterworth A. L., Brownlee D. E., Bridges J. C., Brennan S., Brearley A., Bradley J. P., Bleuet P., Bland P. A., and Bastien R. 2006. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314:17351739.