SEARCH

SEARCH BY CITATION

References

  • Abbas M. M., LeClair A., Owen T., Conrath B. J., Flasar F. M., Kunde V. G., Nixon C. A., Achterberg R. K., Bjoraker G., Jennings D. J., Orton G., and Romani P. N. 2004. The nitrogen isotopic ratio in Jupiter’s atmosphere from observations by the composite infrared spectrometer on the Cassini spacecraft. The Astrophysical Journal 602:10631074.
  • Aikawa Y. and Herbst E. 1999. Deuterium fractionation in protoplanetary disks. The Astrophysical Journal 526:314326.
  • Aléon J., Robert F., Chaussidon M., and Marty B. 2003. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochimica et Cosmochimica Acta 67:37733783.
  • Alexander C. M. O’.D., Russell S. S., Arden J. W., Ash R. D., Grady M. M., and Pillinger C. T. 1998. The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study. Meteoritics & Planetary Science 33:603622.
  • Alexander C. M. O’D., Fogel M., Yabuta H., and Cody G. D. 2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et Cosmochimica Acta 71:43804403.
  • Alexander C. M. O’D., Newsome S. D., Fogel M., Nittler L. R., Busemann H., and Cody G. D. 2010. Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids. Geochimica et Cosmochimica Acta 74:44174437.
  • Altabet M. A. and McCarthy J. J. 1985. Temporal and spatial variations in the natural abundance of 15N in PON from a warm-core ring. Deep-Sea Research 32:755772.
  • Ashley J. W., Huss G. R., Garvie L. A. J., Guan Y., Buseck P. R., and Williams L. B. 2005. Nitrogen and carbon isotopic measurements of carbon nanoglobules from the Tagish Lake meteorite by secondary ion mass spectrometry (abstract #2205). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Bradley J. 2003. Interplanetary dust particles. In Meteorites, comets, and planets, edited by Davis A. M. Treatise on Geochemistry, vol. 1. Amsterdam: Elsevier. pp. 689711.
  • Bradley J. 2010. The astromineralogy of interplanetary dust particles. In Astromineralogy, edited by Henning T. Lecture notes in physics, vol. 815. Berlin: Springer. pp. 259276.
  • Brearley A. J. 2002. In situ observation of carbonaceous material in Murchison (abstract #1388). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Brearley A. J. and Abreu N. M. 2001. In situ observation of carbonaceous material in the matrices of CV and CM carbonaceous chondrites: Preliminary results from energy filtered transmission electron microscopy (abstract #1461). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Brownlee D. E., Ferry G. V., and Tomandl D. 1976. Stratospheric aluminum oxide. Science 191:12701271.
  • Buseck P. R. and Bo-Jun H. 1985. Conversion of carbonaceous material to graphite during metamorphism. Geochimica et Cosmochimica Acta 49:20032016.
  • Busemann H., Young A. E., Alexander C. M. O’D., Hoppe P., Mukhopadhyay S., and Nittler L. R. 2006. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727730.
  • Busemann H., Nguyen A. N., Cody G. D., Hoppe P., Kilcoyne A. L. D., Stroud R. M., Zega T. J., and Nittler L. R. 2009. Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth and Planetary Science Letters 288:4457.
  • Charnley S. D. and Rodgers S. B. 2004. Interstellar diazenylium recombination and nitrogen isotopic fractionation. Monthly Notices of the Royal Astronomical Society 352:600604.
  • Claus G. and Nagy B. 1961. A microbiological examination of some carbonaceous chondrites. Nature 192:594596.
  • Clayton D. 2003. Isotopes in the cosmos: Hydrogen to gallium. Cambridge, UK: Cambridge University Press. 314 p.
  • Clemett S. J., Maechling C. R., Zare R. N., Swan P. D., and Walker R. M. 1993. Identification of complex aromatic molecules in individual interplanetary dust particles. Science 262:721725.
  • Cody G. D., Alexander C. M. O’D., Yabuta H., Kilcoyne A. L. D., Araki T., Ade H., Dera P., Fogel M., Militzer B., and Mysen B. O. 2008. Organic thermometry for chondritic parent bodies. Earth and Planetary Science Letters 272:446455.
  • DeGregorio B. T., Stroud R. M., Nittler L. R., Alexander C. M. O’D., Kilcoyne A. L. D., and Zega T. J. 2010a. Isotopic anomalies in organic nanoglobules from comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation. Geochimica et Cosmochimica Acta 74:44544470.
  • DeGregorio B. T., Nittler L. R., Stroud R. M., Alexander C. M. O’D., Bassim N., Cody G. D., Kilcoyne A. L. D., Milam S., Nuevo M., Sandford S. A., and Zega T. J. 2010b. Isotopic and chemical variation of organic nanoglobules in primitive meteorites (abstract #2108). 41st Lunar and Planetary Science Conference. CD-ROM.
  • DeGregorio B. T., Nittler L. R., Stroud R. M., Alexander C. M. O’D., Bassim N., Cody G. D., Kilcoyne A. L. D., Milam S., Nuevo M., Sandford S. A., and Zega T. J. 2010c. Isotopic and chemical variation on the nanoscale of distinct lithologies from the Tagish Lake meteorite (abstract #5398). Geochimica et Cosmochimica Acta Supplement 73.
  • Deuser W. G. 1970. Extreme 13C/12C variations in Quaternary dolomites from the continental shelf. Earth and Planetary Science Letters 8:118124.
  • Duley W. W. 2001. The 3.3 micron and extended red emissions in interstellar clouds: Further evidence for carbon nanoparticles. The Astrophysical Journal 553:575580.
  • Duprat J., Dobricã E., Engrand C., Aléon J., Marrochi Y., Mostefaoui S., Meibom A., Leroux H., Rouzaud J.-N., Gounelle M., and Robert F. 2010. Extreme deuterium excesses in ultracarbonaceous micrometeorites from central antarctic snow. Nature 328:742745.
  • Floss C. and Stadermann F. J. 2009a. High abundances of circumstellar and interstellar C-anomalous phases in the primitive CR3 chondrites QUE 99177 and MET 00426. The Astrophysical Journal 697:12421255.
  • Floss C. and Stadermann F. J. 2009b. Interstellar components in the primitive CR3 chondrites QUE 99177 and MET 00426 (abstract #1083). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., and Graham G. 2004. Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle. Science 303:13551358.
  • Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., Graham G., and Lea A. S. 2006. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study. Geochimica et Cosmochimica Acta 70:23712399.
  • Floss C., Le Guillou C., Stadermann F. J., and Brearley A. J. 2011. Coordinated NanoSIMS and TEM analyses of C-and N-anomalous phases in the CR3 chondrite MET 00426 (abstract #1455). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Flynn G. J. 2001. Atmospheric entry heating of interplanetary dust. In Accretion of extraterrestrial matter throughout Earth’s history, edited by Peucker-Ehrenbrink B. and Schmitz B. New York: Kulwer Academic Publishers. pp. 107127.
  • Flynn G. J., Keller L. P., Jacobsen C., and Wirick S. 2003. The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta 67:47914806.
  • Gardinier A., Derenne S., Robert F., Behar F., Largeau C., and Maquet J. 2000. Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: Quantitative study. Earth and Planetary Science Letters 184:921.
  • Garvie L. A. J. 2006. Extraterrestrial carbon nanospheres. Carbon 44:158193.
  • Garvie L. A. J. and Buseck P. R. 2004. Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth and Planetary Science Letters 224:431439.
  • Garvie L. A. J. and Buseck P. R. 2006a. Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite. Meteoritics & Planetary Science 41:633642.
  • Garvie L. A. J. and Buseck P. R. 2006b. Carbonaceous nanospheres in chondrites (abstract #1455). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Geiss J. and Bochsler P. 1982. Nitrogen isotopes in the solar system. Geochimica et Cosmochimica Acta 46:529548.
  • Geiss J. and Gloecker G. 1998. Abundances of deuterium and helium in the protosolar cloud. Space Science Reviews 84:239250.
  • Geiss J. and Reeves H. 1981. Deuterium in the solar system. Astronomy & Astrophysics 93:189199.
  • Gibb E. L. and Whittet D. C. B. 2002. The 6 micron feature in protostars: Evidence for organic refractory material. The Astrophysical Journal 566:L113L116.
  • Herd C. D. K., Blinova A., Simkus D. N., Huang Y., Tarozo R., Alexander C. M. O’D., Gyngard F., Nittler L. R., Cody G. D., Fogel M. L., Kebukawa Y., Kilcoyne D. A. L., Hilts R. W., Slater G. F., Glavin D. P., Dworkin J. P., Callahan M. P., Elsila J. E., DeGregorio B. T., and Stroud R. M. 2011. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332:13041307.
  • Hofmann B. A. and Bernasconi S. M. 1998. Review of occurrences and carbon isotope geochemistry of oxalate minerals: Implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids. Chemical Geology 149:127146.
  • Huang Y., Wang Y., Alexandre M. R., Lee T., Rose-Petruck C., Fuller M., and Pizzarello S. 2005. Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochimica et Cosmochimica Acta 69:10731084.
  • Huang Y., Alexandre M. R., and Wang Y. 2007. Structure and isotopic ratios of aliphatic side chains in the insoluble organic matter of the Murchison carbonaceous chondrite. Earth and Planetary Science Letters 259:517525.
  • Keller L. P., Thomas K. L., and McKay D. S. 1996. Carbon petrography and the chemical state of carbon and nitrogen in IDPs. Proceedings, 27th Lunar and Planetary Science Conference. pp. 659660.
  • Keller L. P., Messenger S., Flynn G. J., Clemett S., Wirick S., and Jacobsen C. 2004. The nature of molecular cloud material in interplanetary dust. Geochimica et Cosmochimica Acta 68:25772589.
  • Love S. G. and Brownlee D. E. 1991. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89:2643.
  • Lyons J. R. 2010. N2 self-shielding in the solar nebula: An update (abstract #5442). Meteoritics & Planetary Science Supplement 73.
  • Marty B., Zimmermann L., Burnard P. G., Wieler R., Heber V. S., Burnett D. L., Wiens R. C., and Bochsler P. 2010. Nitrogen isotopes in recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochimica et Cosmochimica Acta 74:340355.
  • Marty B., Chaussidon M., Wiens R. C., Jurewicz A. J. G., and Burnett D. S. 2011a. The lowest 15N/14N end-member of the solar system is the Sun (abstract #1870). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Marty B., Chaussidon M., Wiens R. C., Jurewicz A. J. G., and Burnett D. S. 2011b. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332:15331536.
  • Matrajt G. 2001. La contribution des micrométéorites à l’origine de la vie sur Terre. Ph.D. thesis, Université Pierre et Marie Curie, Paris, France.
  • Matrajt G. and Brownlee D. E. 2006. Acrylic embedding of Stardust particles encased in aerogel. Meteoritics & Planetary Science 41:17151720.
  • Matrajt G., Ito M., Wirick S., Messenger S., Brownlee D. E., Joswiak D. J., Flynn G., Sandford S., Snead C., and Westphal A. 2008. Carbon investigation of two Stardust particles: A TEM, NanoSIMS and XANES study. Meteoritics & Planetary Science 43:315334.
  • Maurette M., Engrand C., Brack A., Kurat G., Leach S., and Perreau M. 1995. Carbonaceous phases in Antarctic micrometeorites and their mineralogical environment. Their contribution to the possible role of micrometeorites as “chondritic chemical reactors” in atmospheres, waters and/or ices. Proceedings, 26th Lunar and Planetary Science Conference. pp. 913914.
  • McKeegan K. D., Swan P., Walker R. M., Wopenka B., and Zinner E. 1987. Hydrogen isotopic variations in interplanetary dust particles. Proceedings, 18th Lunar and Planetary Science Conference. pp. 627628.
  • Messenger S. 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968970.
  • Messenger S. 2002. Opportunities for the stratospheric collection of dust from short-period comets. Meteoritics & Planetary Science 37:14911505.
  • Messenger S. and Walker R. M. 1998. Evidence for molecular cloud material in meteorites and interplanetary dust. In Astrophysical implications of the laboratory study of presolar materials, edited by Bernatowicz T. J. and Zinner E. New York: American Institute of Physics. pp. 545564.
  • Messenger S., Stadermann F. J., Floss C., Nittler L. R., and Mukhopadhyay S. 2002. Isotopic signatures of presolar materials in interplanetary dust. Space Science Reviews 106:155172.
  • Messenger S., Nakamura K., Nittler L. R., and Young A. 2004. Nitrogen isotopic imaging of Tagish Lake carbon globules (abstract #1347). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Messenger S., Nakamura-Messenger K., and Keller L. P. 2008. 15N-rich organic globules in a cluster IDP and the Bells CM2 chondrite (abstract #2391). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Millar T. J., Bennett A., and Herbst E. 1989. Deuterium fractionation in dense interstellar clouds. The Astrophysical Journal 340:906920.
  • Nakamura K., Zolensky M. E., Tomita S., Nakashima S., and Tomeoka K. 2002. Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions. International Journal of Astrobiology 1:179189.
  • Nakamura-Messenger K., Messenger S., Keller L. P., Clemett S. J., and Zolensky M. E. 2006. Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314:14391442.
  • Nittler L. R., Alexander C. M. O’D., Cody G. D., DeGregorio B. T., Kilcoyne A. L. D., Stroud R. M., and Zega T. J. 2009a. Correlated microanalysis of extraterrestrial carbonaceous nanoglobules (abstract #A948). Geochimica et Cosmochimica Acta Supplement 73.
  • Nittler L. R., Alexander C. M. O’D., Cody G. D., DeGregorio B. T., Kilcoyne A. L. D., Stroud R. M., and Tiwari A. 2009b. Micro-scale characteristics of insoluble organic matter in chondrites: A coordinated TEM, STXM and SIMS study (abstract #1145). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Pizzarello S., Cooper G. W., and Flynn G. J. 2006. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press. pp. 625651.
  • Rossignol-Strick M. and Barghoorn E. S. 1971. Extraterrestrial abiogenic organization of organic matter: The hollow spheres of the Orgueil meteorite. Space Life Sciences 3:89107.
  • Sandford S. A. 1987. The collection and analysis of extraterrestrial dust particles. Fundamentals of Cosmic Physics 12:173.
  • Schramm L. S., Brownlee D. E., and Wheelock M. M. 1989. Major element composition of stratospheric micrometeorites. Meteoritics 24:99112.
  • Stroud R. M., Alexander C. M. O’D., Cody G. D., DeGregorio B. T., Kilcoyne A. L. D., Nittler L. R., and Zega T. J. 2009. Correlated microanalysis of carbonaceous nanoglobules (abstract #5332). Meteoritics & Planetary Science Supplement 72.
  • Thomas K. L., Blanford G. E., Keller L. P., Klöck W., and McKay D. S. 1993. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta 57:15511556.
  • Wada E., Shibata R., and Torii T. 1981. 15N abundance in Antarctica: Origin of soil nitrogen and ecological implications. Nature 292:327329.
  • Zinner E. 1988. Interstellar cloud material in meteorites. In Meteorites and the early solar system, edited by Kerridge J. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 956983.