SEARCH

SEARCH BY CITATION

References

  • Armstrong J. T. 1995. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis 4:177200.
  • Bischoff A. and Keil K. 1984. Al-rich objects in ordinary chondrites: Related origin of arbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48:693710.
  • Bonal L., Quirico E., Bourot-Denise M., and Montagnac G. 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta 70:18491863.
  • Caillet C., MacPherson G. J., and Zinner E. K. 1993. Petrologic and Al-Mg isotopic clues to the accretion of two refractory inclusions onto the Leoville parent body: One was hot, the other wasn’t. Geochimica et Cosmochimica Acta 57:47254743.
  • Caillet Komorowski C. L. V., Zinner E. K., McKeegan K. D., Hervig R., and Buseck P. R. 2007. The White Angel: A unique wollastonite-bearing, mass-fractionated refractory inclusion from the Leoville CV3 carbonaceous chondrite. Meteoritics & Planetary Science 42:11591182.
  • Cain P. M., McSween H. Y., and Woodward N. B. 1986. Structural deformation of the Leoville chondrite. Earth and Planetary Science Letters 77:165175.
  • Connolly H. C. Jr. and Burnett D. S. 1999. A study of the minor element concentrations of spinels from two type B calcium-aluminum-rich inclusions: An investigation into potential formation conditions of calcium-aluminum-rich inclusions. Meteoritics & Planetary Science 34:829848.
  • Cuzzi J. N. 2004. Blowing in the wind. III. Accretion of dust rims by chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 168:484497.
  • Downen M. R. and Ebel D. 2010. The formation history of layered chondrules in Acfer 139 (CR) (abstract). GSA Abstracts with Programs 42:A601.
  • Ebel D. S., Brunner C. E., and Weisberg M. K. 2008a. Multiscale abundance and size distribution of inclusions in the Allende CV3 meteorite by X-ray image analysis of slabs (abstract #2121). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Ebel D. S., Weisberg M. K., Hertz J., and Campbell A. J. 2008b. Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite. Meteoritics & Planetary Science 43:17251740.
  • Ebel D. S., Leftwich K., Brunner C. E., and Weisberg M. K. 2009. Abundance and size distribution of inclusions in CV3 chondrites by X-ray image analysis (abstract #2065). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Eisenhour D. 1996. Determining the chondrule size distribution from thin-section measurements. Meteoritics & Planetary Science 31:243248.
  • Fagan T. J., Krot A. N., Keil K., and Yurimoto H. 2004. Oxygen isotopic evolution of amoeboid olivine aggregates in the reduced CV3 chondrites Efremovka, Vigarano, and Leoville. Geochimica et Cosmochimica Acta 68:25912611.
  • Grossman J. N. and Wasson J. T. 1985. The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta 49:925939.
  • Grossman L., Ebel D. S., Simon S. B., Davis A. M., Richter F. M., and Parsad N. M. 2000. Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochimica et Cosmochimica Acta 64:28792894.
  • Hezel D. C. and Kießwetter R. 2010. Quantifying the error of 2D bulk chondrule analyses using a computer model to simulate chondrules (SIMCHON). Meteoritics & Planetary Science 45:555571.
  • Hezel D. C. and Palme H. 2007. The conditions of chondrule formation, Part I: Closed system. Geochimica et Cosmochimica Acta 71:40924107.
  • Hezel D. C., Russell S. S., Ross A. J., and Kearsley A. T. 2008. Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteoritics & Planetary Science 43:18791894.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Chondrites and the protoplanetary disk, ASP Conference Series, Vol. 341, Proceedings of a workshop held 8–11 November 2004 in Kaua’i, Hawai’i, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: Astronomical Society of the Pacific Conference Series 341. pp. 251285.
  • Keil K., Huss G. I., and Wiik H. B. 1969. The Leoville, Kansas, meteorite: A polymict breccia of carbonaceous chondrite and achondrite (abstract). In Meteorite research, edited by Millman P. M. Vienna: Reidel and Springer. p. 217.
  • Keller L. P. 1997. A TEM study of the matrix mineralogy of the Leoville CV3 (reduced group) carbonaceous chondrite: Nebular and parent body features. In Workshop on parent-body and nebular modifications of chondritic materials, edited by Zolensky M. E., Krot A. N., and Scott E. R. D. pp. 3133. LPI Technical Report 97-02, Part 1. Houston, Texas: Lunar and Planetary Institute.
  • Kimura M. and Ikeda Y. 1998. Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteoritics & Planetary Science 33:11391146.
  • Komatsu M., Krot A. N., Petaev M. I., Ulyanov A. A., Keil K., and Miyamoto M. 2001. Mineralogy and petrography of amoeboid olivine aggregates from the reduced CV3 chondrites Efremovka, Leoville and Vigarano: Products of nebular condensation, accretion and annealing. Meteoritics & Planetary Science 36:629641.
  • Kracher A., Keil K., and Scott E. R. D. 1982. Leoville (CV3)—An accretionary breccia (abstract)? Meteoritics 17:239.
  • Kracher A., Keil K., Kallemeyn G. W., Wasson J. T., Clayton R. N., and Huss G. I. 1985. The Leoville (CV3) accretionary breccia. Journal of Geophysical Research 90 (Suppl.): D123D135.
  • Krot A. N., Scott E. R. D., and Zolensky M. E. 1995. Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30:748775.
  • Krot A. N., Hutcheon I. D., and Keil K. 2002. Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37:155182.
  • Krot A. N., MacPherson G. J., Ulyanov A. A., and Petaev M. I. 2004. Fine-grained, spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry. Meteoritics & Planetary Science 39:15171553.
  • Lauretta D. S., Lodders K., and Fegley B. Jr. 1998. Kamacite sulfurization in the solar nebula. Meteoritics & Planetary Science 33:821833.
  • Lauretta D. S., Killgore M., Benoit P. H., Moore S., and Sears D. W. G. 2002. NWA505: A new LL3.0 chondrite with evidence for chondrule formation in a dust-rich environment (abstract). Meteoritics & Planetary Science 37:A84.
  • Lee M. R. and Bland P. A. 2004. Mechanisms of weathering of meteorites recovered from hot and cold deserts and the formation of phyllosilicates. Geochimica et Cosmochimica Acta 68:893916.
  • MacPherson G. J. and Davis A. M. 1993. A hibonite-perovskite-rich type A Leoville inclusion (abstract). Meteoritics 28:389.
  • MacPherson G. J. and Huss G. E. 2005. Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochimica et Cosmochimica Acta 69:30993127.
  • MacPherson G. J. and Krot A. N. 2002. Distribution of Ca-Fe-silicates in CV3 chondrites: Possible controls by parent body compaction (abstract). Meteoritics & Planetary Science 37:A91.
  • Mao X.-Y., Ward B. J., Grossman L., and MacPherson G. J. 1990. Chemical compositions of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites. Geochimica et Cosmochimica Acta 54:21212132.
  • Maruyama S. and Yurimoto H. 2003. Relationship among O, Mg isotopes and the petrography of two spinel-bearing compound chondrules. Geochimica et Cosmochimica Acta 67:39433957.
  • Maruyama S., Yurimoto H., and Sueno S. 1999. Oxygen isotopic evidence regarding the formation of spinel-bearing chondrules. Earth and Planetary Science Letters 169:165171.
  • McCoy T. J., Dickinson T. L., and Lofgren G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science 34:735746.
  • McSween H. Y. Jr. 1977. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta 41:17611770.
  • Metzler K., Bischoff A., and Stöffler D. 1992. Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochimica et Cosmochimica Acta 56:28732897.
  • Nakamura T., Tomeoka K., and Takeda H. 1992. Shock effects of the Leoville CV carbonaceous chondrite: A transmission electron microscope study. Earth and Planetary Science Letters 114:159170.
  • Nakamura T., Tomeoka K., Sekine T., and Takeda H. 1993. Shock metamorphism of carbonaceous chondrites: Textural diversity of experimentally shocked Allende in various conditions (abstract). Meteoritics 28:408.
  • Nakamura T., Tomeoka K., Takaoka N., Sekine T., and Takeda H. 2000. Impact-induced textural changes of CV carbonaceous chondrites: Experimental reproduction. Icarus 146:289300.
  • Nettles J. W., Lofgren G. E., Carlson W. D., and McSween H. Y. Jr. 2006. Extent of chondrule melting: Evaluation of experimental textures, nominal grain size, and convolution index. Meteoritics & Planetary Science 41:10591071.
  • Pack A., Shelley J. M. G., and Palme H. 2004. Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science 303:9971000.
  • Prinz M., Weisberg M. K., Nehru C. E., and Delaney J. S. 1985. Layered chondrules: Evidence for multistage histories during chondrule formation (abstract). Meteoritics 20:732.
  • Richter F. M., Davis A. M., and Mendybaev R. A. 2002. How the type B1 CAIs got their melilite mantles (abstract #1901). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Rubin A. E. 2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta 74:48074828.
  • Rubin A. E. and Wasson J. T. 2005. Non-spherical lobate chondrules in CO3.0 Y-81020: General implications for the formation of low-FeO porphyritic chondrules in CO chondrites. Geochimica et Cosmochimica Acta 69:211220.
  • Russell S. S., Krot A. N., Huss G. R., Keil K., Itoh S., and Yurimoto H. 2005. The genetic relationship between refractory inclusions and chondrules. In Chondrites and the protoplanetary disk, ASP Conference Series, Vol. 341, Proceedings of a workshop held 8–11 November 2004 in Kaua’i, Hawai’i, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: Astronomical Society of the Pacific Conference Series 341. pp. 317350.
  • Scott E. R. D. 2007. Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences 35:577620.
  • Scott E. R. D., Keil K., and Stöffler D. 1992. Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta 56:42814293.
  • Simon S. B., McKeegan K. D., Ebel D. S., and Grossman L. 2000. Complexly zoned chromium-aluminum spinel found in situ in the Allende meteorite. Meteoritics & Planetary Science 35:215227.
  • Sneyd D. S., McSween H. Y. Jr., Sugiura N., Strangway D. W., and Nord G. I. Jr. 1988. Origin of petrofabrics and magnetic anisotropy in ordinary chondrites. Meteoritics 23:139149.
  • Sylvester P. L., Simon S. B., and Grossman L. 1993. Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta 57:37633784.
  • Uesugi M., Sekiya M., and Nakamura T. 2008. Kinetic stability of a melted iron globule during chondrule formation. I. Non-rotating model. Meteoritics & Planetary Science 43:717730.
  • Wasson J. T. and Rubin A. E. 2010. Metal in CR chondrites. Geochimica et Cosmochimica Acta 74:22122230.
  • Weisberg M. K. and Prinz M. 1996. Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 119128.
  • Weisberg M. K., Prinz M., Clayton R. N., and Mayeda T. K. 1992. Formation of layered chondrules in CR2 chondrites: A petrologic and oxygen isotopic study (abstract). Meteoritics 27:306.
  • Zanda B., Bourot-Denise M., and Perron C. 1990. Inclusions in the metal of Leoville CV3 chondrite (abstract). Meteoritics 25:422.
  • Zanda B., Bourot-Denise M., Hewins R., Cohen B. A., Humayun M., and Campbell A. J. 2002. Accretion textures, iron evaporation and re-condensation in Renazzo chondrules (abstract #1852). 33rd Lunar and Planetary Science Conference. CD-ROM.