SEARCH

SEARCH BY CITATION

References

  • Abreu N. M. and Brearley A. J. 2010. Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta 74:11461171.
  • Aléon J., Engrand C., Leshin L. A., and McKeegan K. D. 2009. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets. Geochimica et Cosmochimica Acta 73:45584575.
  • Bradley J. P. 1994. Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Nature 265:925929.
  • Bradley J. P. 1995. GEMS and interstellar silicate grains (abstract). 26th Lunar and Planetary Science Conference. pp. 159160.
  • Bradley J. P. 2003. Interplanetary dust particles. In Meteorites, comets, and planets, edited by Holland H. D. and Turekian K. K. Treatise on Geochemistry, vol. 1. Amsterdam: Elsevier B.V. pp. 689711.
  • Bradley J. P., Brownlee D. E., and Veblen D. R. 1983. Pyroxene whiskers and platelets in interplanetary dust: Evidence of vapour phase growth. Nature 301:473477.
  • Bradley J. P., Wozniakiewicz P., and Ishii H. A. 2011. Constraints on the cosmochemical significance of element/Si ratios and oxygen isotopic compositions of GEMS from IDPs collected in silicone oil (abstract #1320). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Brownlee D. E., Joswiak D. J., Schlutter D. J., Pepin R. O., Bradley J. P., and Love S. G. 1995. Identification of individual cometary IDP’s by thermally stepped He release (abstract). 26th Lunar and Planetary Science Conference. pp. 183184.
  • Brownlee D., Tsou P., Aléon J., Alexander C. M. O’. D., Araki T., Bajt S., Baratta G. A., Bastien R., Bland P., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J. C., Browning N. D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A., Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G., Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D’Hendecourt L., Djouadi Z., Dominguez G., Duxbury T., Dworkin J. P., Ebel D. S., Economou T. E., Fakra S., Fairey S. A. J., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet Ph., Gilmour J., Glavin D. P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L., Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck P., Herzog G. F., Hoppe P., Hörz F., Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen C., Jacobsen S., Jones S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H., Kilcoyne A. L. D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A., Leitner J., Lemelle L., Leroux H., Liu M.-C., Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Marty B., Matrajt G., McKeegan K., Meibom A., Mennella V., Messenger K., Messenger S., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F. J. M., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Suzuki Y., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., Trigo-Rodríguez J. M., Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., Uesugi K., Velbel M., Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S., Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R. N., Zega T., Ziegler K., Zimmermann L., Zinner E., and Zolensky M. 2006. Comet 81P/Wild 2 under a microscope. Science 314:17111716.
  • Ciesla F. J. 2007. Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318:613615.
  • Clayton R. N. 1993. Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences 21:115149.
  • Clayton R. N. and Mayeda T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:20892104.
  • Clayton R. N., Onuma N., Grossman L., and Mayeda T. K. 1977. Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters 34:209224.
  • Flynn G. J. 1989. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77:287310.
  • Gerard O. and Jaoul O. 1989. Oxygen diffusion in San Carlos olivine. Journal of Geophysical Research 94:41194128.
  • Greshake A. 1997. The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta 61:437452.
  • Hallenbeck S. L., Nuth J. A., and Nelson R. N. 2000. Evolving optical properties of annealing silicate grains: From amorphous condensate to crystalline mineral. The Astrophysical Journal 535:247255.
  • Heck P. R., Ushikubo T., Schmitz B., Kita N. T., Spicuzza M. J., and Valley J. W. 2010. A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: High-precision oxygen three-isotope SIMS analysis. Geochimica et Cosmochimica Acta 74:497509.
  • Jackson A. A. and Zook H. A. 1992. Orbital evolution of dust particles from comets and asteroids. Icarus 97:7084.
  • Joswiak D. J., Brownlee D. E., Pepin R. O., and Schlutter D. J. 2000. Characteristics of asteroidal and cometary IDPs obtained from stratospheric collectors: Summary of measured He release temperatures, velocities and descriptive mineralogy (abstract #1500). 31st Lunar and Planetary Science Conference. CD-ROM.
  • Keller L. P. and Messenger S. 2011. On the origins of GEMS grains. Geochimica et Cosmochimica Acta 75:53365365.
  • Kita N. T., Ushikubo T., Fu B., and Valley J. W. 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chemical Geology 264:4357.
  • Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H., and Valley J. W. 2010. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta 74:66106635.
  • Klöck W., Thomas K. L., McKay D. S., and Palme H. 1989. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites. Nature 339:126128.
  • Kobayashi S., Imai H., and Yurimoto H. 2003. New extreme 16O-rich reservoir in the early solar system. Geochemical Journal 37:663669.
  • Krot A. N., Yurimoto H., McKeegan K. D., Leshin L., Chaussidon M., Libourel G., Yoshitake M., Huss G. R., Guan Y., and Zanda B. 2006a. Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie der Erde 66:249276.
  • Krot A. N., Libourel G., and Chaussidon M. 2006b. Oxygen isotope compositions of chondrules in CR chondrites. Geochimica et Cosmochimica Acta 70:767779.
  • Krot A. N., Nagashima K., Yoshitake M., and Yurimoto H. 2010. Oxygen isotopic compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC 02675 (CBb) and QUE 94627 (CBb). Geochimica et Cosmochimica Acta 74:21902211.
  • Libourel G. and Chaussidon M. 2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters 301:921.
  • Love S. G. and Brownlee D. E. 1991. Heating and thermal transformation of micrometeorites entering the Earth’s atmosphere. Icarus 89:2643.
  • Love S. G. and Brownlee D. E. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262:550553.
  • Love S. G. and Brownlee D. E. 1994. Peak atmospheric entry temperatures of micrometeorites. Meteoritics 29:6970.
  • Lyons J. R. and Young E. D. 2005. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317320.
  • Matrajt G., Guan Y., Leshin L., Taylor S., Genge M., Joswiak D., and Brownlee D. 2006. Oxygen isotope measurements of individual unmelted Antarctic micrometeorites. Geochimica et Cosmochimica Acta 70:40074018.
  • McKeegan K. D. 1987. Oxygen isotopes in refractory stratospheric dust particles: Proof of extraterrestrial origin. Science 237:14681471.
  • McKeegan K. D., Aléon J., Bradley J., Brownlee D., Busemann H., Butterworth A., Chaussidon M., Fallon S., Floss C., Gilmour J., Gounelle M., Graham G., Guan Y., Heck P. R., Hoppe P., Hutcheon I. D., Huth J., Ishii H., Ito M., Jacobsen S. B., Kearsley A., Leshin L. A., Liu M.-C., Lyon I., Marhas K., Marty B., Matrajt G., Meibom A., Messenger S., Mostefaoui S., Mukhopadhyay S., Nakamura-Messenger K., Nittler L., Palma R., Pepin R. O., Papanastassiou D. A., Robert F., Schlutter D., Snead C. J., Stadermann F. J., Stroud R., Tsou P., Westphal A., Young E. D., Ziegler K., Zimmermann L., and Zinner E. 2006. Isotopic compositions of cometary matter returned by Stardust. Science 314:17241728.
  • McKeegan K. D., Kallio A. P., Heber V. S., Jarzebinski G., Mao P. H., Coath C. D., Kunihiro T., Wiens R. C., Nordholt J. E., Moses R. W. Jr., Reisenfeld D. B., Jurewicz A. J. G., and Burnett D. S. 2011. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:528532.
  • Messenger S. 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968971.
  • Messenger S. 2002. Opportunities for the stratospheric collection of dust from short-period comets. Meteoritics & Planetary Science 37:14911505.
  • Messenger S. 2011. Stratospheric collection of dust from comet 73P/Schwassmann-Wachmann 3 (abstract #2158). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Messenger S., Keller L. P., Stadermann F. J., Walker R. M., and Zinner E. 2003. Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science 300:105108.
  • Nakamura T. 2005. Post-hydration thermal metamorphism of carbonaceous chondrites. Journal of Mineralogical and Petrological Sciences 100:260272.
  • Nakamura T. 2006. Yamato 793321 CM chondrite: Dehydrated regolith material of a hydrous asteroid. Earth and Planetary Science Letters 242:2638.
  • Nakamura T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N. T., Valley J. W., Zolensky M. E., Kakazu Y., Sakamoto K., Mashio E., Uesugi K., and Nakano T. 2008. Chondrule-like objects in short-period comet 81P/Wild 2. Science 321:16641667.
  • Nakamura T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N. T., Valley J. W., Takahata N., Sano Y., Zolensky M. E., Kakazu Y., Uesugi K., and Nakano T. 2009. Additional evidence for the presence of chondrules in comet 81P/Wild 2 (abstract). Meteoritics & Planetary Science 44:A153.
  • Nakashima D., Kimura M., Yamada K., Noguchi T., Ushikubo T., and Kita N. T. 2010. Study of chondrules in CH chondrites—I: Oxygen isotope ratios of chondrules (abstract). Meteoritics & Planetary Science 45:A148.
  • Nakashima D., Ushikubo T., Zolensky M. E., Weisberg M. K., Joswiak D. J., Brownlee D. E., Matrajt G., and Kita N. T. 2011a. High precision oxygen three isotope analysis of Wild 2 particles and anhydrous chondritic interplanetary dust particles (abstract #1240). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Nakashima D., Ushikubo T., Rudraswami N. G., Kita N. T., Valley J. W., and Nagao K. 2011b. Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 chondrite using a multiple-hole disk. Meteoritics & Planetary Science 46:857874.
  • Nuth J. A., Hill H. G. M., and Kletetschka G. 2000. Dtermining the ages of comets from the fraction of crystalline dust. Nature 406:275276.
  • Rudraswami N. G., Ushikubo T., Nakashima D., and Kita N. T. 2011. Oxygen isotope systematics of chondrules in Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta. 75:75967611.
  • Ryerson F. J. and McKeegan K. D. 1994. Determination of oxygen self-diffusion in åkermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions. Geochimica et Cosmochimica Acta 58:37133734.
  • Sakamoto N., Seto Y., Itoh S., Kuramoto K., Fujino K., Nagashima K., Krot A. N., and Yurimoto H. 2007. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231233.
  • Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T., and Nagahara H. 2011. Oxygen isotopic measurements of phenocrysts in chondrules from the primitive carbonaceous chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs (abstract #1426). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W. 2011. Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite (abstract #1183). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Yada T., Nakamura T., Noguchi T., Matsumoto N., Kusakabe M., Hiyagon H., Ushikubo T., Sugiura N., Kojima H., and Takaoka N. 2005. Oxygen isotopic and chemical compositions of cosmic spherules collected from the Antarctic ice sheet: Implications for their precursor materials. Geochimica et Cosmochimica Acta 69:57895804.
  • Young E. D. and Russell S. S. 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282:452455.
  • Yurimoto H. and Kuramoto K. 2004. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305:17631766.
  • Zolensky M. E. and Barrett R. A. 1994. Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. Meteoritics 29:616620.
  • Zolensky M. E., Zega T. J., Yano H., Wirick S., Westphal A. J., Weisberg M. K., Weber I., Warren J. L., Velbel M. A., Tsuchiyama A., Tsou P., Toppani A., Tomioka N., Tomeoka K., Teslich N., Taheri M., Susini J., Stroud R., Stephan T., Stadermann F. J., Snead C. J., Simon S. B., Simionovici A., See T. H., Robert F., Rietmeijer F. J. M., Rao W., Perronnet M. C., Papanastassiou D. A., Okudaira K., Ohsumi K., Ohnishi I., Nakamura-Messenger K., Nakamura T., Mostefaoui S., Mikouchi T., Meibom A., Matrajt G., Marcus M. A., Leroux H., Lemelle L., Le L., Lanzirotti A., Langenhorst F., Krot A. N., Keller L. P., Kearsley A. T., Joswiak D., Jacob D., Ishii H., Harvey R., Hagiya K., Grossman L., Grossman J. N., Graham G. A., Gounelle M., Gillet P., Genge M. J., Flynn G., Ferroir T., Fallon S., Ebel D. S., Dai Z. R., Cordier P., Clark B., Chi M., Butterworth A. L., Brownlee D. E., Bridges J. C., Brennan S., Brearley A., Bradley J. P., Bleuet P., Bland P. A., and Bastien R. 2006. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314:17351739.