• Clauser C. and Huenges E. 1995. Thermal conductivity of rocks and minerals. In Rock physics & phase relations: A handbook of physical constants, edited by Ahrens T. J. Washington: American Geophysical Union. pp. 105126.
  • Consolmagno G. J., Britt D. T., and Macke R. J. 2008. The significance of meteorite density and porosity. Chemie der Erde 68:129.
  • Delbo M., dell’Oro A., Harris A. W., Mottolo S., and Mueller M. 2007. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus 190:236249.
  • Dilley N. R, Black R. C., Montes L., Wilson A., and Simmonds M. B. 2002. Commercial apparatus for measuring thermal transport properties from 1.9 to 390 Kelvin, Materials Research Society Symposium Proceedings 691:8590.
  • Friedrich J. M., Wignarajah D. P., Chaudhary S., Rivers M. L., Nehru C. E., and Ebel D. S. 2008. Three-dimensional petrography of metal phases in equilibrated L chondrites––Effects of shock loading and dynamic compaction. Earth and Planetary Science Letters 275:172180.
  • Grady M. M. 2000. Catalogue of meteorites, 5th ed. Cambridge, UK: Cambridge University Press. 690 p.
  • Krupka K. M, Robie R. A., Hemingway B. S., Kerrick D. M., and Ito J. 1985. Low temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite. American Mineralogist 70:249260.
  • Macke R. J. 2010. Survey of meteorite physical properties: Density, porosity and magnetic susceptibility. Ph.D. thesis, University of Central Florida. 310 p.
  • Macke R. J., Britt D. T., Consolmagno G. J., and Hutson M. L. 2010. Enstatite chondrite density, magnetic susceptibility and porosity. Meteoritics & Planetary Science 45:15131526.
  • Macke R. J., Britt D. T., and Consolmagno G. J. 2011. Density, porosity and magnetic susceptibility of achondritic meteorites. Meteoritics & Planetary Science 46:311326.
  • Magri C., Consolmagno G. J., Ostro S. J., Benner L. A. M., and Beeny B. R. 2001. Radar constraints on asteroid regolith properties using 433 Eros as ground truth. Meteoritics & Planetary Science 36:16971709.
  • Matsui T. and Osako M. 1979. Thermal property measurement of Yamato meteorites. Memoirs of National Institute of Polar Research Special Issue 15:243252.
  • Min K., Reiners P. W., Nicolescu S., and Greenwood J. P. 2004. Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry. Geology 32:677680.
  • Opeil C. P., Consolmagno G. J., and Britt D. T. 2010. The thermal conductivity of meteorites: New measurements and analysis. Icarus 208:449454.
  • Rochette P., Gattacceca J., Bonal L., Bourot-Denise M., Chevrier V., Clerc J.-P., Consolmagno G., Folco L., Gounelle M., Kohout T., Pesonen L., Quirico E., Sagnotti L., and Skripnik A. 2008. Magnetic classification of stony meteorites: 2. Non-ordinary chondrites. Meteoritics & Planetary Science 43:959980.
  • Rubin A. E., Warren P. H., Greenwood J. P., Verish R. S., Leshin L. A., Hervig R. L., Clayton R. N., and Mayeda T. K. 2000. Los Angeles: The most differentiated basaltic Martian meteorite. Geology 28:10111014.
  • Szurgot M. (2011). On the specific heat capacity and thermal capacity of meteorites (abstract #1150). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Yomogida K. and Matsui T. 1983. Physical properties of ordinary chondrites. Journal of Geophysical Research 88:95139533.