SEARCH

SEARCH BY CITATION

References

  • Anders E., Hayatsu R., and Studier M. H. 1973. Organic compounds in meteorites. Science 182:781790.
  • Bada J. L. 1972. Kinetics of racemization of amino acids as a function of pH. Journal of the American Chemical Society 94:13711373.
  • Bada J. L., Glavin D. P., McDonald G. D., and Becker L. 1998. A search for endogenous amino acids in Martian meteorite ALH 84001. Science 279:362365.
  • Botta O., Glavin D. P., Kminek G., and Bada J. L. 2002. Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Origins of Life and Evolution of the Biosphere 32:143163.
  • Brearley A. J. 2006. The action of water. In Meteorites and the early solar system II. edited by Lauretta D. S. and McSween H. J. Jr. Tucson, AZ: The University of Arizona Press. pp. 584624.
  • Burton A. S., Glavin D. P., Callahan M. P., Dworkin J. P., Jenniskens P., and Shaddad M. H. 2011. Heterogeneous distributions of amino acids provide evidence of multiple sources within the Almahata Sitta parent body, asteroid 2008 TC3. Meteoritics & Planetary Science 46:17031712.
  • Chyba C. and Sagan C. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355:125132.
  • Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., and Garrel L. 2001. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879883.
  • Cronin J. R. and Chang S. 1993. Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. In The chemistry of life’s origins, edited by Greenberg J. M. Boston: Kluwer. pp. 209258.
  • Cronin J. R. and Moore C. B. 1971. Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172:13271329.
  • Cronin J. R. and Moore C. B. 1976. Amino acids of the Nogoya and Mokoia carbonaceous chondrites. Geochimica et Cosmochimica Acta 40:853857.
  • Cronin J. R. and Pizzarello S. 1990. Aliphatic hydrocarbons of the Murchison meteorite. Geochimica et Cosmochimica Acta 54:28592868.
  • Dodd R. T. 1981. Meteorites, a petrologic-chemical synthesis. New York: Cambridge University Press. 368. p.
  • Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proceedings of the National Academy of Sciences 98:21382141.
  • Elsila J. E., Glavin D. P., and Dworkin J. P. 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics & Planetary Science 44:13231330.
  • Elsila J. E., Callahan M. P., Glavin D. P., Dworkin J. P., and Brückner H. 2011. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: Assessing the potential for meteoritic contamination. Astrobiology 11:123133.
  • Engel M. H., Macko S. A., and Silfer J. A. 1990. Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:4749.
  • Glavin D. P. and Bada J. L. 2001. Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1:259269.
  • Glavin D. P. and Dworkin J. P. 2009. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences 106:54875492.
  • Glavin D. P., Dworkin J. P., Aubrey A., Botta O., Doty J. H., Martins Z., and Bada J. L. 2006. Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science 41:889902.
  • Glavin D. P., Dworkin J. P., and Sandford S. A. 2008. Detection of cometary amines in samples returned by Stardust. Meteoritics & Planetary Science 43:399413.
  • Glavin D. P., Callahan M. P., Dworkin J. P., and Elsila J. E. 2010a. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics & Planetary Science 45:19481972.
  • Glavin D. P., Aubrey A. D., Callahan M. P., Dworkin J. P., Elsila J. E., Parker E. T., Bada J. L., Jenniskens P., and Shaddad M. H. 2010b. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science 45:16951709.
  • Goodrich C. A. 1999. Are ureilites residues from partial melting of chondritic material? The answer from MAGPOX. Meteoritics & Planetary Science 34:109119.
  • Goodrich C. A., Fioretti A. M., Tribaudino M., and Molin G. 2001. Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009. Geochimica et Cosmochimica Acta 65:621652.
  • Goodrich C. A., Scott E. R. D., and Fioretti A. M. 2004. Ureilitic breccias: Clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chemie der Erde––Geochemistry 64:283327.
  • Hayatsu R. and Anders E. 1981. Organic compounds in meteorites and their origins. Topics in Current Chemistry 99:137.
  • Herrin J. S., Zolensky M. E., Ito M., Le L., Mittlefehldt D. W., Jenniskens P., Ross A. J., and Shaddad M. H. 2010. Thermal and fragmentation history of ureilitic asteroids: Insights from the Almahata Sitta fall. Meteoritics & Planetary Science 45:17891803.
  • Higuchi H., Morgan J. W., Ganapathy R., and Anders E. 1976. Chemical fractionations in meteorites—X Ureilites. Geochimica et Cosmochimica Acta 40:15631571.
  • Hu G., Ouyang Z., Wang X., and Wen Q. 1998. Carbon isotopic fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula. Science in China Series D: Earth Sciences 41:202207.
  • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system, edited by Lauretta D. and McSween H. J. Tucson, AZ: The University of Arizona Press. pp. 567586.
  • Kerridge J. F. 1999. Formation and processing of organics in the early solar system. Space Science Reviews 90:275288.
  • King E. Jr., Schonfeld E., Richardson K., and Eldridge J. 1969. Meteorite fall at Pueblito de Allende, Chihuahua, Mexico: Preliminary information. Science 163:928929.
  • Kress M. E. and Tielens A. G. G. M. 2001. The role of Fischer-Tropsch catalysis in solar nebula chemistry. Meteoritics & Planetary Science 36:7591.
  • Krot A. N., Hutcheon I. D., Brearley A. J., Pravdivtseva O. V., Petaev M. I., and Hohenberg C. M. 2006. Timescales and settings for alteration of chondritic meteorites. In Timescales and settings for alteration of chondritic meteorites, II, edited by Lauretta D. and McSween H. J. Tucson, AZ: The University of Arizona Press. pp. 525553.
  • Kvenvolden K., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I. R., and Moore C. 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923926.
  • Lancet M. S. and Anders E. 1970. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170:980982.
  • Levy R. L., Grayson M. A., and Wolf C. J. 1973. The organic analysis of the Murchison meteorite. Geochimica et Cosmochimica Acta 37:467483.
  • Li J. and Brill T. B. 2003. Decarboxylation mechanism of amino acids by density functional theory. The Journal of Physical Chemistry A 107:59935997.
  • Martins Z., Alexander C. M. O., Orzechowska G. E., Fogel M. L., and Ehrenfreund P. 2007. Indigenous amino acids in primitive CR meteorites. Meteoritics & Planetary Science 42:21252136.
  • McCollom T. M. and Seewald J. S. 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters 243:7484.
  • Miller S. L. 1957. The mechanism of synthesis of amino acids by electric discharges. Biochimica et Biophysica Acta 23:480489.
  • Mittlefehldt D. W., McCoy T. J., Goodrich C. A., and Kracher A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary materials, edited by Papike J. J. Washington, D.C.: Mineralogical Society of America. pp. 4-14-195.
  • Murae T., Masuda A., and Takahashi T. 1984. Pyrolitic studies of organic components in Antarctic carbonaceous chondrites Y-74662 and ALH77307. Memoirs of National Institute of Polar Research Special Issue 35:250256.
  • Nguyen M. T., Sengupta D., Raspoet G., and Vanquickenborne L. G. 1995. Theoretical study of the thermal decomposition of acetic acid: Decarboxylation versus dehydration. The Journal of Physical Chemistry 99:1188311888.
  • Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4:6974.
  • Pizzarello S. and Cooper G. W. 2001. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorites. Meteoritics & Planetary Science 36:897909.
  • Pizzarello S., Huang Y., and Fuller M. 2004. The carbon isotopic distribution of Murchison amino acids. Geochimica et Cosmochimica Acta 68:49634969.
  • Rodante F. 1992. Thermodynamics and kinetics of decomposition processes for standard [alpha]-amino acids and some of their dipeptides in the solid state. Thermochimica Acta 200:4761.
  • Rubin A. E. 1988. Formation of ureilites by impact-melting of carbonaceous chondritic material. Meteoritics 23:333337.
  • Scott J. H., O’Brien D. M., Emerson D., Sun H., McDonald G. D., Salgado A., and Fogel M. L. 2006. An examination of the carbon isotope effects associated with amino acid biosynthesis. Astrobiology 6:867880.
  • Sephton M. A. 2002. Organic compounds in carbonaceous meteorites. Natural Product Reports 19:292311.
  • Studier M. H., Hayatsu R., and Anders E. 1968. Origin of organic matter in early solar system—I hydrocarbons. Geochimica et Cosmochimica Acta 32:151173.
  • Thaddeus P. 2006. The prebiotic molecules observed in the interstellar gas. Philosophical Transactions of the Royal Society B: Biological Sciences 361:16811687.
  • Weisberg M., McCoy T., and Krot A. 2006. Systematics and evaluation of meteorite classification. In Meteorites and the early solar system II, 2nd ed., edited by Lauretta D. and McSween H. J. Tucson, AZ: The University of Arizona Press. pp. 1952.
  • Yoshino D., Hayatsu K., and Anders E. 1971. Origin of organic matter in early solar system—III. Amino acids: Catalytic synthesis. Geochimica et Cosmochimica Acta 35:927938.
  • Yuen G. U., Pecore J. A., Kerridge J. F., Pinnavaia T. J., Rightor E. G., Flores J., Wedeking K., Mariner R., Des Marais D. J., and Chang S. 1990. Carbon isotope fractionation in Fischer-Tropsch type reactions (abstract). 21st Lunar and Planetary Science Conference. pp. 13671368.
  • Zolensky M., Herrin J., Mikouchi T., Ohsumi K., Friedrich J., Steele A., Rumble D., Fries M., Sandford S., Milam S., Hagiya K., Takeda H., Satake W., Kurihara T., Colbert M., Hanna R., Maisano J., Ketcham R., Goodrich C. A., Le L., Robinson G., Martinez J., Ross K., Jenniskens P., and Shaddad M. H. 2010. Mineralogy and petrography of the Almahata Sitta ureilite. Meteoritics & Planetary Science 45:16181637.