SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O’D. 2004. Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochimica et Cosmochimica Acta 68:39433969.
  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J. 2008. The formation conditions of chondrules and 6 chondrites. Science 320:16171619.
  • Amelin Y., Krot A. N., Hutcheon I. D., and Ulyanov A. A. 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:16781683.
  • Armitage P. J., Livio M., and Pringle J. E. 2001. Episodic accretion in magnetically layered protoplanetary discs. Monthly Notices of the Royal Astronomical Society 324:705711.
  • Asphaug E., Jutzi M., and Movshovitz N. 2011a. Chondrule formation by partial accretion of planetesimals (abstract #1647). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Asphaug E., Jutzi M., and Movshovitz N. 2011b. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters 308:369379.
  • Bizzarro M., Baker J. A., and Haack H. 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431:275278.
  • Bland P. A., Alard O., Benedix G. K., Kearsley A. T., Menzies O. N., Watt L. E., and Rogers N. W. 2005. Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences 102:1375513760.
  • Boley A. C. and Durisen R. H. 2008. Gravitational instabilities, Chondrule formation, and the FU orionis phenomenon. The Astrophysical Journal 685:11931209.
  • Boss A. P. 2002. Evolution of the solar nebula. V. Disk instabilities with varied thermodynamics. The Astrophysical Journal 576:462472.
  • Boss A. P. and Durisen R. H. 2005. Chondrule-forming shock fronts in the solar nebula: A possible unified scenario for planet and chondrite formation. The Astrophysical Journal 621:L137L140.
  • Boss A. P. and Graham J. A. 1993. Clumpy disk accretion and chondrule formation. Icarus 106:168178.
  • Campbell A. J., Zanda B., Perron C., Meibom A., and Petaev M. I. 2005. Origin and thermal history of Fe-Ni metal in primitive chondrites. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronmical Society of the Pacific. pp. 407431.
  • Ciesla F. J. 2005. Chondrule-forming processes–An overview. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 811820.
  • Ciesla F. J. and Hood L. L. 2002. The nebular shock wave model for chondrule formation: Shock processing in a particle-gas suspension. Icarus 158:281293.
  • Ciesla F. J., Hood L. L., and Weidenschilling S. J. 2004a. Evaluating planetesimal bow shocks as sites for chondrule formation. Meteoritics & Planetary Science 39:18091821.
  • Ciesla F. J., Lauretta D. S., and Hood L. L. 2004b. The frequency of compound chondrules and implications for chondrule formation. Meteoritics & Planetary Science 39:531544.
  • Cohen B. A. and Hewins R. H. 2004. An experimental study of the formation of metallic iron in chondrules. Geochimica et Cosmochimica Acta 68:16771689.
  • Connolly H. C. Jr. and Desch S. J. 2004. On the origin of the “kleine Kugelchen” called Chondrules. Chemie der Erde/Geochemistry 64:95125.
  • Connolly H. C. Jr. and Hewins R. H. 1991. The influence of bulk composition and dynamic melting conditions on olivine chondrule textures. Geochimica et Cosmochimica Acta 55:29432950.
  • Connolly H. C. Jr. and Hewins R. H. 1995. Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment: An experimental investigation. Geochimica et Cosmochimica Acta 59:32313246.
  • Connolly H. C. Jr. and Love S. G. 1998. The formation of chondrules: Petrologic tests of the shock wave model. Science 280:6267.
  • Connolly H. C., Hewins R. H., Ash R. D., Zanda B., Lofgren G. E., and Bourot-Denise M. 1994. Carbon and the formation of reduced chondrules. Nature 371:136.
  • Connolly H. C. Jr., Jones B. D., and Hewins R. H. 1998. The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors. Geochimica et Cosmochimica Acta 62:27252735.
  • Connolly H. C. Jr., Desch S. J., Ash R. D., and Jones R. H. 2006. Transient heating events in the protoplanetary nebula. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: University of Arizona Press. pp. 383397.
  • Connelly J. N., Amelin Y., Krot A. N., and Bizzarro M. 2008. Chronology of the Solar System’s oldest solids. The Astrophysical Journal 675:L121L124.
  • Cuzzi J. N. and Alexander C. M. O’D. 2006. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441:483485.
  • Cuzzi J. N. and Hogan R. C. 2003. Blowing in the wind. I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 164:127138.
  • Cuzzi J. N., Hogan R. C., Paque J. M., and Dobrovolskis A. R. 2001. Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical Journal 546:496508.
  • Cuzzi J. N., Hogan R. C., and Shariff K. 2008. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal 687:14321447.
  • Davis A. M., Alexander C. M. O’D., Nagahara H., and Richter F. M. 2005. Evaporation and condensation during CAI and chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 432455.
  • DeHart J. M., and Lofgren G. E. 1996. Experimental studies of group A1 chondrules. Geochimica et Cosmochimica Acta 60:22332242.
  • Desch S. J. 2000. Astrophysical constraints on chondrule formation models (abstract #1923). 31st Lunar and Planetary Science Conference. CD-ROM.
  • Desch S. J. 2007. Mass distribution and planet formation in the solar nebula. The Astrophysical Journal 671:878893.
  • Desch S. J. and Connolly H. C. Jr. 2002. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science 37:183207.
  • Desch S. J. and Cuzzi J. N. 2000. The generation of lightning in the solar nebula. Icarus 143:87105.
  • Desch S. J., Borucki W. J., Russell C. T., and Bar-Nun A. 2002. Progress in planetary lightning. Reports on Progress in Physics 65:955997.
  • Desch S. J., Ciesla F. J., Hood L. L., and Nakamoto T. 2005. Heating of chondritic materials in solar nebula shocks. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 849872.
  • Desch S. J., Morris M. A., Connolly H. C., and Boss A. P. 2010. A critical examination of the X-wind model for chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide production. The Astrophysical Journal 725:692711.
  • Ebel D. S. and Grossman L. 2000. Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta 64:339366.
  • Gammie C. F. 1996. Layered accretion in T Tauri disks. The Astrophysical Journal 457:355362.
  • Gibbard S. G., Levy E. H., and Morfill G. E. 1997. On the possibility of lightning in the protosolar nebula. Icarus 130:517533.
  • Gooding J. L. and Keil K. 1981. Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics 16:1743.
  • Grimm R. E. and McSween H. Y. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259:653655.
  • Grossman J. N., Rubin A. E., Nagahara H., and King E. A. 1988. Properties of chondrules. In Meteorites and the early solar system, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: University of Arizona Press. pp. 619659.
  • Güttler C., Poppe T., Wasson J. T., and Blum J. 2008. Exposing metal and silicate charges to electrical discharges: Did chondrules form by nebular lightning? Icarus 195:504510.
  • Hewins R. H. 1997. Chondrules. Annual Review of Earth and Planetary Sciences 25:6183.
  • Hewins R. H. and Connolly H. C. Jr. 1994. Experimental constraints on models for origins of chondrules: Peak temperatures. LPI Contributions 844:1112.
  • Hewins R. H., and Connolly H. C. Jr. 1996. Peak temperatures of flash-melted chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 197204.
  • Hewins R. H. and Radomsky P. M. 1990. Temperature conditions for chondrule formation. Meteoritics 25:309318.
  • Hewins R. H., Klein L. C., and Fasano B. V. 1981. Conditions of formation of excentroradial chondrules (abstract). 7th Lunar and Planetary Science Conference. pp. 448450.
  • Hewins R. H., Connolly H. C., Lofgren G. E. Jr., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D. and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 286316.
  • Hezel D. C. and Palme H. 2008. Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters 265:716725.
  • Hood L. L. 1998. Thermal processing of chondrule and CAI precursors in planetesimal bow shocks. Meteoritics & Planetary Science 33:97107.
  • Hood L. L. and Horanyi M. 1991. Gas dynamic heating of chondrule precursor grains in the solar nebula. Icarus 93:259269.
  • Hood L. L., Ciesla F. J., and Weidenschilling S. J. 2005. Chondrule formation in planetesimal bow shocks: Heating and cooling rates. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 873882.
  • Hood L. L., Ciesla F. J., Artemieva N. A., Marzari F., and Weidenschilling S. J. 2009. Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics & Planetary Science 44:327342.
  • Huang S., Lu J., Prinz M, Weisberg M. K., Benoit P. H., and Sears D. W. G. 1996. Chondrules: their diversity and the role of open-system processes during their formation. Icarus 122:316.
  • Iida A., Nakamoto T., Susa H., and Nakagawa Y. 2001. A shock heating model for chondrule formation in a protoplanetary disk. Icarus 153:430450.
  • Ivanova M. A., Kononkova N. N., Franchi I. A., Verchovsky A. B., Korochantseva E. V., Trieloff M., Krot A. N., and Brandstatter F. 2006. Isheyevo meteorite: Genetic link between CH and CB chondrites? (abstract #1100). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Johansen A., Oishi J. S., Mac Low M.-M., Klahr H., Henning T., and Youdin A. 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:10221025.
  • Jones R. H. 1996. Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 163172.
  • Jones R. H. and Lofgren G. E. 1993. A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics 28:213221.
  • Jones R. H., Lee T., Connolly H. C. Jr., Love S. G., and Shang H. 2000. Formation of chondrules and CAIs: Theory vs observation. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: University of Arizona Press. pp. 927962.
  • Jones R. H., Grossman J. N., and Rubin A. E. 2005. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 251284.
  • Joung M. K. R., Mac Low M.-M., and Ebel D. S. 2004. Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. The Astrophysical Journal 606:532541.
  • Kennedy A. K., Lofgren G. E., and Wasserburg G. J. 1993. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules—Equilibrium values and kinetic effects. Earth and Planetary Science Letters 115:177193.
  • Klerner S. and Palme H. 1999. Origin of chondrules and matrix in the Renazzo meteorite. Meteoritics & Planetary Science Supplement 34:A64.
  • Krot A. N., Scott E. R. D., and Zolensky M. E. 1995. Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30:748775.
  • Krot A. N., Fegley B. Jr., Lodders K., and Palme H. 2000a. Meteoritical and astrophysical constraints on the oxidation state of the solar nebula. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: University of Arizona Press. pp. 10191054.
  • Krot A. N., Meibom A., Petaev M. I., Keil K., Zolensky M. E., Saito A., Mukai M., and Ohsumi K. 2000b. Ferrous silicate spherules with euhedral iron,nickel-metal grains from CH carbonaceous chondrites: Evidence for supercooling and condensation under oxidizing conditions. Meteoritics & Planetary Science 35:12491258.
  • Krot A. N., Amelin Y., Cassen P., and Meibom A. 2005. Young chondrules in CB chondrites from a giant impact in34 the early Solar System. Nature 436:989992.
  • Kurahashi E., Kita N. T., Nagahara H., and Morishita Y. 2008. 26Al 26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta 72:38653882.
  • Lauretta D. S., Nagahara H., and Alexander C. M. O’D. 2006. Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Tucson, Arizona: University of Arizona Press. pp. 431459.
  • Levy E. H. and Araki S. 1989. Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81:7491.
  • Libourel G. and Chaussidon M. 2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters 301:921.
  • Libourel G. and Krot A. N. 2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters 254:18.
  • Liffman K. 2009. A shocking solar nebula? The Astrophysical Journal 694:L41L44.
  • Liffman K. and Brown M. J. I. 1996. The protostellar jet model of chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 285302.
  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591:12201247.
  • Lofgren G. E. 1989. Limits on chondrule formation processes imposed by dynamic crystallization experiments. Meteoritics 24:294.
  • Lofgren G. E. 1996. A dynamic crystallization model for chondrule melts. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 187196.
  • Lofgren G. and Lanier A. B. 1990. Dynamic crystallization study of barred olivine chondrules. Geochimica et Cosmochimica Acta 54:35373551.
  • Lofgren G. and Russell W. J. 1986. Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition. Geochimica et Cosmochimica Acta 50:17151726.
  • Miller A. A., Hillenbrand L. A., Covey K. R., Poznanski D., Silverman J. M., Kleiser I. K. W., Rojas-Ayala B., Muirhead P. S., Cenko S. B., Bloom J. S., Kasliwal M. M., Filippenko A. V., Law N. M., Ofek E. O., Dekany R. G., Rahmer G., Hale D., Smith R., Quimby R. M., Nugent P., Jacobsen J., Zolkower J., Velur V., Walters R., Henning J., Bui K., McKenna D., Kulkarni S. R., Klein C. R., Kandrashoff M., and Morton A. 2011. Evidence for an FU orionis-like outburst from a classical T Tauri star. The Astrophysical Journal 730:8094.
  • Miura H. and Nakamoto T. 2006. Shock-wave heating model for chondrule formation: Prevention of isotopic fractionation. The Astrophysical Journal 651:12721295.
  • Miura H., Nakamoto T., and Susa H. 2002. A shock-wave heating model for chondrule formation: Effects of evaporation and gas flows on silicate particles. Icarus 160:258270.
  • Miyamoto M., Mikouchi T., and Jones R. H. 2009. Cooling rates of porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization. Meteoritics & Planetary Science 44:521530.
  • Morfill G., Spruit H., and Levy E. H. 1993. Physical processes and conditions associated with the formation of protoplanetary disks. In Protostars and planets III, edited by Levy E. H. and Lunine J. I. Tucson, Arizona: University of Arizona Press. pp. 939978.
  • Morris M. A. and Desch S. J. 2009. Phyllosilicate emission from protoplanetary disks: Is the indirect detection of extrasolar water possible? Astrobiology 9:965978.
  • Morris M. A. and Desch S. J. 2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal 722:14741494.
  • Morris M. A. and Desch S. J. 2011. Thermal histories of chondrules: An assessment of the effect of a size distribution of precursor particles. Meteoritics & Planetary Science Supplement 74:5202.
  • Morris M. A., Desch S. J., and Ciesla F. J. 2010. Preliminary assessment of chondrule cooling rates in planetesimal bow shocks, including the heating effects of H2 recombination (abstract #2393). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Murakami T. and Ikeda Y. 1994. Petrology and mineralogy of the Yamato-86751 CV3 chondrite. Meteoritics 29:397409.
  • Najita J. R. and Shu F. H. 1994. Magnetocentrifugally driven flows from young stars and disks. 3: Numerical solution of the sub-Alfvenic region. The Astrophysical Journal 429:808825.
  • Nakamoto T., Hayashi M. R., Kita N. T., and Tachibana S. 2005. Chondrule-forming shock waves in the solar nebula by X-ray flares. In Chondrites and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. vol. 341. Cambridge, UK: Cambridge University Press. pp. 883892.
  • Nelson A. F. and Ruffert M. 2005. A proposed origin for chondrule-forming shocks in the solar nebula. In Chondrites and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. vol. 341. Cambridge, UK: Cambridge University Press. pp. 903912.
  • Ostriker E. C. and Shu F. H. 1995. Magnetocentrifugally driven flows from young stars and disks. IV. The accretion funnel and dead zone. The Astrophysical Journal 447:813828.
  • Palme H., Spettel B., and Ikeda Y. 1993. Origin of chondrules and matrix in carbonaceous chondrites. Meteoritics 28:417.
  • Petaev M. I., Meibom A., Krot A. N., Wood J. A., and Keil K. 2001. The condensation origin of zoned metal grains in Queen Alexandra Range 94411: Implications for the formation of the Bencubbin-like chondrites. Meteoritics & Planetary Science 36:93106.
  • Pickett B. K., Meja A. C., Durisen R. H., Cassen P. M., Berry D. K., and Link R. P. 2003. The thermal regulation of gravitational instabilities in protoplanetary disks. The Astrophysical Journal 590:10601080.
  • Pilipp W., Hartquist T. W., Morfill G. E., and Levy E. H. 1998. Chondrule formation by lightning in the Protosolar Nebula? Astronomy and Astrophysics 331:121146.
  • Radomsky P. M. and Hewins R. H. 1990. Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta 54:34753490.
  • Rubin A. 1999. Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta 63:22812298.
  • Rubin A. E. 2005. The origin of chondrules and chondrites. Geochimica et Cosmochimica Acta 69:47454746.
  • Rubin A. E. 2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta 74:48074828.
  • Ruzicka A., Floss C., and Hutson M. 2008. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochimica et Cosmochimica Acta 72:55305557.
  • Ruzmaikina T. V. and Ip W. H. 1994. Chondrule formation in radiative shock. Icarus 112:430447.
  • Sanders I. S. 1996. A chondrule-forming scenario involving molten planetesimals. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press. pp. 327334.
  • Sanders I. S. and Taylor G. J. 2005. Implications of Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. vol. 341. San Francisco: Astronomical Society of the Pacific. pp. 915932.
  • Scott E. R. D. and Krot A. N. 2005. Thermal processing of silicate dust in the solar nebula: Clues from primitive chondrite matrices. The Astrophysical Journal 623:571578.
  • Shu F., Najita J., Ostriker E., Wilkin F., Ruden S., and Lizano S. 1994a. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. The Astrophysical Journal 429:781796.
  • Shu F. H., Najita J., Ruden S. P., and Lizano S. 1994b. Magnetocentrifugally driven flows from young stars and disks. 2: Formulation of the dynamical problem. The Astrophysical Journal 429:797807.
  • Shu F. H., Najita J., Ostriker E. C., and Shang H. 1995. Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. The Astrophysical Journal 455:L155L158.
  • Shu F. H., Shang H., and Lee T. 1996. Toward an astrophysical theory of chondrites. Science 271:15451552.
  • Shu F. H., Shang H., Glassgold A. E., and Lee T. 1997. X-rays and fluctuating X-winds from protostars. Science 277:14751479.
  • Shu F. H., Shang H., Gounelle M., Glassgold A. E., and Lee T. 2001. The origin of chondrules and refractory inclusions in chondritic meteorites. The Astrophysical Journal 548:10291050.
  • Skinner W. R. 1990. Bipolar outflows and a new model of the early solar system. Part II: The origins of chondrules, isotopic anomalies, and chemical fractionations (abstract). 21st Lunar and Planetary Science Conference. p. 1168.
  • Sorby H. C. 1877. On the structure and origin of meteorites. Nature 15:495498.
  • Tachibana S. and Huss G. R. 2005. Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta 69:30753097.
  • Tachibana S., Ozawa K., Nagahara H., and Huss G. R. 2002. Isotopic fractionation of iron during evaporation of Fe metal in the presence of back reaction. Meteoritics & Planetary Science 37:A138.
  • Tsuchiyama A., Osada Y., Nakano T., and Uesugi K. 2004. Experimental reproduction of classic barred olivine chondrules: Open-system behavior of chondrule formation 1. Geochimica et Cosmochimica Acta 68:653672.
  • Urey H. C. 1967. Parent bodies of the meteorites and the origin of chondrules. Icarus 7:350359.
  • Urey H. C. and Craig H. 1953. The composition of the stone meteorites and the origin of the meteorites. Geochimica et Cosmochimica Acta 4:3682.
  • Villeneuve J., Chaussidon M., and Libourel G. 2009. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325:985988.
  • Wadhwa M. and Russell S. S. 2000. Timescales of accretion and differentiation in the early Solar system: The meteoritic evidence. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: The University of Arizona Press. pp. 9951018.
  • Weidenschilling S. J. 1977. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science 51:153158.
  • Weidenschilling S. J. 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus 214:671684.
  • Weidenschilling S. J. and Cuzzi J. N. 1993. Formation of planetesimals in the solar nebula. In Protostars and planets III, edited by Levy E. H. and Lunine J. I. Tucson, Arizona: University of Tucson Press. pp. 10311060.
  • Weidenschilling S. J., Marzari F., and Hood L. L. 1998. The origin of chondrules at Jovian resonances. Science 279:681684.
  • Weinbruch S. and Müller W. F. 1995. Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochimica et Cosmochimica Acta 59:32213230.
  • Weinbruch S., Buettner H., Holzheid A., Rosenhauer M., and Hewins R. H. 1998. On the lower limit of chondrule cooling rates: The significance of iron loss in dynamic crystallization experiments. Meteoritics & Planetary Science 33:6574.
  • Weisberg M. K., Prinz M., Clayton R. N., Mayeda T. K., Sugiura N., Zashu S., and Ebihara M. 2001. A new metal-rich chondrite grouplet. Meteoritics & Planetary Science 36:401418.
  • Weiss B. P., Gattacceca J., Stanley S., Rochette P., and Christensen U. R. 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Science Reviews 152:341390.
  • Wick M. J., Jones R. H., Morris M., and Desch S. J. 2010. Formation conditions of type I chondrules: Comparison of experimentally determined cooling rates with the shock wave model for chondrule formation. Meteoritics & Planetary Science Supplement 73:5278.
  • Wood J. A. 1963. On the origin of chondrules and chondrites. Icarus 2:152180.
  • Wood J. A. 1984. Meteoritic constraints on processes in the solar nebula. Meteoritics 19:339.
  • Wood J. A. 1985. Meteoritic constraints on processes in the solar nebula. In Protostars and planets II, edited by Black D. C. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 687702.
  • Wood J. A. 1996. Processing of chondritic and planetary material in spiral density waves in the nebula. Meteoritics & Planetary Science 31:641645.
  • Yu Y. and Hewins R. H. 1997. Evaporation of potassium and sodium under vacuum conditions––Did chondrules really form at low pressure? (abstract #1613). 28th Lunar and Planetary Science Conference. CD-ROM.
  • Yu Y. and Hewins R. H. 1998. Transient heating and chondrite formation––Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta 62:159172.
  • Yu Y., Hewins R. H., and Eiben B. A. 1995. Cooling rates of chondrules. Meteoritics 30:604.
  • Yu Y., Wang J., Zanda B., Alexander C. M. O’D., Bourot-Denise M., and Hewins R. H. 1998. Mass fractionation of K isotopes in chondrule evaporation experiments (abstract #1642). 29th Lunar and Planetary Science Conference. CD-ROM.
  • Zanda B., Bland P. A., Le Guillou C., and Hewins R. 2009. Chemical and isotopic relationship between matrix and chondrules in ordinary and carbonaceous chondrites. Geochimica et Cosmochimica Acta Supplement 73:1498.