SEARCH

SEARCH BY CITATION

References

  • Berger E. L., Zega T. J., Keller L. P., and Lauretta D. S. 2011. Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites. Geochimica et Cosmochimica Acta 75:35013513.
  • Bischoff A., Palme H., Ash R. D., Clayton R. N., Schultz L., Herpers U., Stöffler D., Grady M. M., Pillinger C. T., Spettel B., Weber H., Grund T., Endreß M., and Weber D. 1993. Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara. Geochimica et Cosmochimica Acta 57:15871603.
  • Bland P. A., Alard O., Benedix G. K., Kearsley A. T., Menzies O. N., Watt L. E., and Rogers N. W. 2005. Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences 102:1375513760.
  • Brearley A. J. 2006. The action of water. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press, pp. 587624.
  • Campbell A. J. and Humayun M. 1999. Trace element microanalysis in iron meteorites by laser ablation ICPMS. Analytical Chemistry 71:939946.
  • Campbell A. J. and Humayun M. 2004. Formation of metal grains in the CH chondrites ALH 85085 and PCA 91467. Geochimica et Cosmochimica Acta 68:34093422.
  • Campbell A. J. and Humayun M. 2005. Compositions of Group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta 69:47334744.
  • Campbell A. J., Humayun M., Meibom A., Krot A. N., and Keil K. 2001. Origin of zoned metal grains in the QUE 94411 chondrite. Geochimica et Cosmochimica Acta 65:163180.
  • Campbell A. J., Humayun M., and Weisberg M. K. 2002. Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta 66:647660.
  • Campbell A. J., Simon S. B., Humayun M., and Grossman L. 2003. Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochimica et Cosmochimica Acta 67:31193134.
  • Campbell A. J., Humayun M., and Weisberg M. K. 2005. Compositions of unzoned and zoned metal in the CBb chondrites Hammadah al Hamra 237 and Queen Alexandra Range 94627. Meteoritics & Planetary Science 40:11311148.
  • Chen J. H., Papanastassiou D. A., and Wasserburg G. J. 1998. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta 62:33793392.
  • Connolly H. C. Jr. and Hewins R. H. 1995. Chondrules as products of dust collisions with totally molten dropets within a dust-rich nebular environment: An experimental investigation. Geochimica et Cosmochimica Acta 59:32313246.
  • Connolly H. C. Jr., Huss G. R., and Wasserburg G. J. 2001. On the formation of Fe-Ni metal in Renazzo-like carbonaceous chondrites. Geochimica et Cosmochimica Acta 71:45674588.
  • Connolly H. C. Jr., Desch S. J., Ash R. D., and Jones R. H. 2006. Transient heating events in the protoplanetary nebula. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press. pp. 383397.
  • Crank J. 1975. The mathematics of diffusion. Oxford, UK: Oxford University Press. 414 pp.
  • DeHart J. M. and Lofgren G. E. 1996. Experimental studies of group A1 chondrules. Geochimica et Cosmochimica Acta 60:22332242.
  • Desch S. J. and Connolly H. C. Jr. 2002. A model of thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science 37:183207.
  • Dodson M. H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40:259274.
  • Ebel D. S., and Grossman L. 2000. Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta 64:339366.
  • Ebel D. S., Weisberg M. K., Hertz J., and Campbell A. J. 2008. Shape, metal abundance, chemistry, and origin of chondrules in Renazzo (CR) chondrite. Meteoritics & Planetary Science 43:17251740.
  • Ferguson F. T., Nuth J. A. III, and Johnson N. M. 2004. Thermogravimetric measurement of the vapor pressure of iron from 1573 K to 1973 K. Journal of Chemical and Engineering Data 49:497501.
  • Gaboardi M., and Humayun M. 2009. Elemental fractionation during LA-ICP-MS analysis of silicate glasses: Implications for matrix-independent standardization. Journal of Analytical Atomic Spectrometry 24, 11881197, doi: 10.1039/b900876d.
  • Ganguly J. and Tirone M. 1999. Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: Theoretical formulation and applications. Earth and Planetary Science Letters 170:131140.
  • Goldstein J. I. 1966. Butler, Missouri: An unusual iron meteorite. Science 153:975976.
  • Grossman L. and Larimer J. W. 1974. Early chemical history of the solar system. Reviews of Geophysics and Space Physics 12:71101.
  • Hewins R. H. 1997. Chondrules. Annual Review of Earth and Planetary Sciences 25:6183.
  • Hewins R. H. and Connolly H. C. Jr. 1996. Peak temperatures of flash-melted chondrules. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press, pp. 197204.
  • Hewins R. H. and Radomsky P. M. 1990. Temperature conditions for chondrule formation. Meteoritics 25:309318.
  • Hewins R. H. and Zanda B. 2012. Chondrules: Precursors and interactions with the nebular gas. Meteoritics & Planetary Science 47. This issue.
  • Hewins R. H., Connolly H. C. Jr., Lofgren G. E., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: Astronomical Society of the Pacific. pp. 286316.
  • Humayun M. 2010. The origin of chondrules in CR chondrites: An iron-clad perspective. Symposium on Chondrules: Their role in early solar system history, 73rd Annual Meeting of the Meteoritical Society, New York, USA.
  • Humayun M. and Campbell A. J. 2002. The duration of ordinary chondrite metamorphism inferred from tungsten microdistribution in metal. Earth and Planetary Science Letters 198:225243.
  • Humayun M., Campbell A. J., Zanda B., and Bourot-Denise M. 2002. Formation of Renazzo chondrule metal inferred from siderophile elements (abstract #1965). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Humayun M., Simon S. B., and Grossman L. 2007. Tungsten and hafnium distribution in calcium-aluminum inclusions (CAIs) from Allende and Efremovka. Geochimica et Cosmochimica Acta 71:46094627.
  • Humayun M., Connolly H. C. Jr., Rubin A. E., and Wasson J. T. 2010a. Elemental distribution in metal from the CR chondrites Acfer 059 and PCA 91082 (abstract #1840). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Humayun M., Davis F. A., and Hirschmann M. M. 2010b. Major element analysis of natural silicates by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry 25, 9981005, doi: 10.1039/C001391A.
  • Huss G. R., Meshik A. P., Smith J. B., and Hohenberg C. M. 2003. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta 67:48234848.
  • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press, pp. 567586.
  • Jones R. H. 1990. Petrology and mineralogy of type II, FeO-rich, chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta 54:17851802.
  • Jones R. H. and Lofgren G. E. 1993. A comparison of FeO-rich porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics 28:213221.
  • Joung M. K. R., Mac Low M.-M., and Ebel D. S. 2004. Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. The Astrophysical Journal 606:532541.
  • Kong P. and Palme H. 1999. Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite. Geochimica et Cosmochimica Acta 63:36733682.
  • Kong P., Ebihara M., and Palme H. 1999. Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochimica et Cosmochimica Acta 63:26372652.
  • Krot A. N., Meibom A., Weisberg M. K., and Keil K. 2002. The CR chondrite clan: Implications for early solar system processes. Meteoritics & Planetary Science 37:14511490.
  • Krot A. N., Hutcheon I. D., Brearley A. J., Pravdivtseva O. V., Petaev M. I., and Hohenberg C. M. 2006. Time scales and settings for alteration of chondritic meteorites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press, pp. 525553.
  • Larimer J. W. 1967. Chemical fractionations in meteorites—I. Condensation of the elements. Geochimica et Cosmochimica Acta 31:12151238.
  • Lauretta D. S., Lodders K., and Fegley B. 1998. Kamacite sulfurization in the solar nebula. Meteoritics & Planetary Science 33:821833.
  • Lee M. S., Rubin A. E., and Wasson J. T. 1992. Origin of metallic Fe-Ni in Renazzo and related chondrites. Geochimica et Cosmochimica Acta 56:25212533.
  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591:12201247.
  • Lofgren G. E. 1996. A dynamic crystallization model for chondrule melts. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press, pp. 187196.
  • Miyamoto M., Mikouchi T., and Jones R. H. 2009. Cooling rates of porphyritic livine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization. Meteoritics & Planetary Science 44:521530.
  • Morris M. A. and Desch S. J. 2010. Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal 722:14741494.
  • Nesmeyanov A. H. 1963. Vapor pressure of the elements. New York: Academic Press.
  • Radomsky P. M. and Hewins R. H. 1990. Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta 54:34753490.
  • Righter K., Campbell A. J., and Humayun M. 2005. Diffusion of trace elements in FeNi metal: Applications to zoned metal grains in chondrites. Geochimica et Cosmochimica Acta 69:31453158.
  • Rubin A. E. 1994. Metallic copper in ordinary chondrites. Meteoritics 29:9398.
  • Sanders I. S. 1996. A chondrule-forming scenario involving molten planetesimals. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press, pp. 327334.
  • Sano J., Ganguly J., Hervig R., Dohmen R., and Zhang X. 2011. Neodymium diffusion in orthopyroxene: Experimental studies and applications to geological and planetary problems. Geochimica et Cosmochimica Acta 75:46844698.
  • Taylor G. J., Scott E. R. D., and Keil K. 1983. Cosmic setting of chondrule formation. In Chondrules and their origins, edited by King E. A. Houston, Texas: Lunar and Planetary Institute. pp. 262278.
  • Wai C. M., and Wasson J. T. 1979. Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites. Nature 282:790793.
  • Walker R. J., McDonough W. F., Honesto J., Chabot N. L., McCoy T. J., Ash R. D., and Bellucci J. J. 2008. Modeling fractional crystallization of group IVB iron meteorites. Geochimica et Cosmochimica Acta 72:21982216.
  • Wasson J. T. and Rubin A. E. 2010. Metal in CR chondrites. Geochimica et Cosmochimica Acta 74:22122230.
  • Wasson J. T., Ouyang X., Wang J., and Jerde E. 1989. Chemical classification of iron meteorites: XI. Multi-element studies of 38 new irons and the high abundance of ungrouped irons from Antarctica. Geochimica et Cosmochimica Acta 53:735744.
  • Watson H. C. and Watson E. B. 2003. Siderophile trace element diffusion in Fe-Ni alloys. Physics of the Earth and Planetary Interiors 139:6575.
  • Weinbruch S. and Müller W. F. 1995. Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochimica et Cosmochimica Acta 59:32213230.
  • Weisberg M. K., Prinz M., Clayton R. N., and Mayeda T. 1993. The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta 57:15671586.
  • Whattam S. A. and Hewins R. H. 2009. Granoblastic olivine aggregates as precursors of Type I chondrules: An experimental test. Geochimica et Cosmochimica Acta 73:54605482.
  • Yu Y. and Hewins R. H. 1998. Transient heating and chondrule formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta 62:159172.
  • Yu Y., Hewins R. H., and Zanda B. 1996. Sodium and sulfur in chondrules: Heating times and cooling curves. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. R. D. Cambridge, UK: Cambridge University Press, pp. 213220.
  • Zanda B. 2004. Chondrules. Earth and Planetary Science Letters 224:117.
  • Zanda B., Bourot-Denise M., Hewins R. H., Cohen B. A., Delaney J. S., Humayun M., and Campbell A. J. 2002. Accretion textures, iron evaporation and re-condensation in Renazzo chondrules (abstract #1852). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Zanda B., Hewins R. H., Bourot-Denise M., Bland P. A., and Albarede F. 2006. Formation of solar nebula reservoirs by mixing chondritic components. Earth and Planetary Science Letters 248:650660.