Forsterite-bearing type B refractory inclusions from CV3 chondrites: From aggregates to volatilized melt droplets

Authors


Corresponding author. E-mail: bullocke@si.edu

Abstract

Abstract– Detailed petrologic and oxygen isotopic analysis of six forsterite-bearing Type B calcium-aluminum-rich inclusions (FoBs) from CV3 chondrites indicates that they formed by varying degrees of melting of primitive precursor material that resembled amoeboid olivine aggregates. A continuous evolutionary sequence exists between those objects that experienced only slight partial melting or sintering through objects that underwent prolonged melting episodes. In most cases, melting was accompanied by surface evaporative loss of magnesium and silicon. This loss resulted in outer margins that are very different in composition from the cores, so much so that in some cases, the mantles contain mineral assemblages that are petrologically incompatible with those in the cores. The precursor objects for these FoBs had a range of bulk compositions and must therefore have formed under varying conditions if they condensed from a solar composition gas. Five of the six objects show small degrees of mass-dependent oxygen isotopic fractionation in pyroxene, spinel, and olivine, consistent with the inferred melt evaporation, but there are no consistent differences among the three phases. Forsterite, spinel, and pyroxene are 16O-rich with Δ17O ∼ −24‰ in all FoBs. Melilite and anorthite show a range of Δ17O from −17‰ to −1‰.

Ancillary