SEARCH

SEARCH BY CITATION

References

  • Bada J. L. 1991. Amino acid cosmogeochemistry. Philosophical Transactions of the Royal Society B 333:349358.
  • Bailey J. A., Chrysostomou A., Hough J. H., Gledhill T. M., McCall A., Clark S., Menard F., and Tamura M. 1998. Circular polarization in star forming regions: Implications for biomolecular homochirality. Science 281:672674.
  • Bernstein M. P., Dworkin J. P., Sandford S. A., Cooper G. W., and Allamandola L. J. 2002. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401403.
  • Blackmond D. G. 2004. Asymmetric autocatalysis and its implications for the origin of homochirality. Proceedings of the National Academy of Sciences 101:57325736.
  • Blinova A., Alexander C. M. O’D., Wang J., and Herd C. D. K. 2011. Mineralogy and Mn-Cr extinct radionuclide dating of a dolomite from the pristine Tagish Lake meteorite (abstract #9007). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Bonner W. A. 1972. Origins of molecular chirality. In Exobiology, edited by Ponnamperuna C. Amsterdam, the Netherlands: North-Holland Publishing. pp. 170234.
  • Bonner W. A. and Rubenstein E. 1987. Supernovae, neutron stars, and biomolecular chirality. Biosystems 20:99.
  • Bonner W. A., Blair N. E., and Lemmon R. M. 1979. The radioracemization of amino acids by ionizing radiation: Geochemical and cosmochemical implications. Origins of Life 9:279290.
  • Bowen R. 1988. Isotopes in the biosphere. In Isotopes in the Earth sciences, edited by Bowen R. New York: Kluwer. pp. 452469.
  • Browning L. B., McSween H. Y., and Zolensky M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 60:26212633.
  • Cataldo F., Ursini O., Angelini G., Iglesias-Groth S., and Manchado A. 2011. Radiolysis and radioracemization of 20 amino acids from the beginning of the Solar System. Rendiconti Lincei: Scienze Fisiche e Naturali 22:8194.
  • Chyba C. and Sagan C. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355:125132.
  • Clayton R. N. and Mayeda T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters 67:151161.
  • Cohen B. A. and Chyba C. F. 2000. Racemization of meteoritic amino acids. Icarus 145:272281.
  • Cohen B. A. and Coker R. F. 2000. Modeling of liquid water on CM parent bodies and implications for amino acid racemization. Icarus 145:369381.
  • Cronin J. R. and Pizzarello S. 1997. Enantiomeric excesses in meteoritic amino acids. Science 275:951955.
  • De Marcellus P., Meinert C., Nuevo M., Filippi J.-J., Danger G., Deboffle D., Nahon L., d’Hendecourt L. L. S., and Meierhenrich U. J. 2011. Non-racemic amino acid production by ultraviolet radiation of achiral interstellar ice analogs with circularly polarized light. The Astrophysical Journal Letters 727:16.
  • Eck R. V. 1966. Evolution of the structure of Ferredoxin based on living relics of primitive amino acid sequences. Science 152:363366.
  • Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of Cl type carbonaceous chondrites. Proceedings of the National Academy of Sciences 98:21382141.
  • Elsila J. E., Dworkin J. P., Bernstein M. P., Martin M. P., and Sandford S. A. 2007. Mechanisms of amino acid formation in interstellar ice analogs. The Astrophysical Journal 660:911918.
  • Elsila J. E., Callahan M. P., Glavin D. P., Dworkin J. P., and Brückner H. 2011. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: Assessing the potential for meteoritic contamination. Astrobiology 11:123133.
  • Engel M. and Macko S. 1997. Isotopic evidence for extraterrestrial non-racemic amino-acids in the Murchison meteorite. Nature 389:265268.
  • Engel M. H. and Macko S. A. 2001. The stereochemistry of amino acids in the Murchison meteorite. Precambrian Research 106:3545.
  • Engel M. H. and Nagy B. 1982. Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837840.
  • Engel M. H., Macko S. A., and Silfer J. A. 1990. Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:4749.
  • Fletcher S. P., Jagt R. B. C., and Feringa B. L. 2007. An astrophysically relevant mechanism for amino acid enantiomer enrichment. Chemical Community 2007:25782580.
  • Glavin D. P. and Dworkin J. P. 2009. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences 106:54875492.
  • Glavin D. P., Callahan M. P., Dworkin J. P., and Elsila J. E. 2010. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics & Planetary Science 45:19481972.
  • Hall D. O. and Rao K. K. 1971. Role for Ferrodoxins in the origin of life and biological evolution. Nature 233:136138.
  • Herd R. H. and Herd C. D. K. 2007. Towards systematic study of the Tagish Lake meteorite (abstract #2347). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Herd C. D. K., Blinova A., Simkus D. N., Huang Y., Tarozo R., Alexander C. M. O’D., Gyngard F., Nittler L. R., Cody G. D., Kebukawa Y., Kilcoyne A. L. D., Hilts R. W., Slater G. F., Glavin D. P., Dworkin J. P., Callahan M. P., Elsila J. E., DeGregorio B. T., and Stroud R. M. 2011. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332:13041307.
  • Hildebrand A. R., McCausland P. J. A., Brown P. G., Longstaffe F. J., Russell S. D. J., Tagliaferrii E., Wacker J. F., and Mazur M. J. 2006. The fall and recovery of the Tagish Lake meteorite. Meteoritics & Planetary Science 41:407431.
  • Klussman M., Iwamura H., Mathew S. P., Wells D. H., Jr., Pandya U., Armstrong A., and Blackmond D. G. 2006. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621623.
  • Kminek G., Botta O., Glavin D. P., and Bada J. L. 2002. Amino acids in the Tagish Lake meteorite. Meteoritics & Planetary Science 37:697702.
  • Kondepudi D. K., Kaufman R. J., and Singh N. 1990. Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975976.
  • Kvenvolden K. A., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I. R., and Moore C. 1970. Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 288:923926.
  • Leshin L. A., Rubin A. E., and McKeegan K. D. 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta 61:835845.
  • McCarthy M. D., Hedges J. I., and Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science 281:231234.
  • Miller S. L. and Orgel L. E. 1974. The origins of life on Earth. Englewood Cliffs, New Jersey: Prentice-Hall. 229 p.
  • Muñoz Caro G. M., Meierhenrich U. J., Schutte W. A., Barbier B., Arcones Segovia A., Rosenbauer H., Thiemann W. H. P., Brack A., and Greenberg J. M. 2002. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403406.
  • Noorduin W. L., Bode A. A. C., van der Meijden M., Meekes H., van Etteger A. F., van Enckevort W. J. P., Christianen P. C. M., Kaptein B., Kellogg R. M., Rasing T., and Vlieg E. 2009. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nature Chemistry 1:729732.
  • Palguta J., Schubert G., and Travis B. J. 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters 296:235243.
  • Peltzer E. T. and Bada J. L. 1978. Alpha-hydroxycarboxylic acids in Murchison meteorite. Nature 272:443444.
  • Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4:6974.
  • Pizzarello S. and Cooper G. W. 2001. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorites. Meteoritics & Planetary Science 36:897909.
  • Pizzarello S. and Cronin J. R. 1998. Alanine enantiomers in the Murchison meteorite. Nature 394:236.
  • Pizzarello S. and Cronin J. R. 2000. Non-racemic amino acids in the Murchison and Murray meteorites. Geochimica et Cosmochimica Acta 64:329338.
  • Pizzarello S. and Groy T. L. 2011. Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective. Geochimica et Cosmochimica Acta 75:645656.
  • Pizzarello S. and Huang Y. 2005. The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomocules precursors. Geochimica et Cosmochimica Acta 69:599605.
  • Pizzarello S., Huang Y., Becker L., Poreda R. J., Nieman R. A., Cooper G., and Williams M. 2001. The organic content of the Tagish Lake meteorite. Science 293:22362239.
  • Pizzarello S., Zolensky M., and Turk K. A. 2003. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochimica et Cosmochimica Acta 67:15891595.
  • Pizzarello S., Huang Y., and Fuller M. 2004. The carbon isotopic distribution of Murchison amino acids. Geochimica et Cosmochimica Acta 68:49634969.
  • Pizzarello S., Huang Y., and Alexandre M. R. 2008. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proceedings of the National Academy of Sciences 105:37003704.
  • Pollock G. E., Cheng C.-N., Cronin S. E., and Kvenvolden K. A. 1975. Stereoisomers of isovaline in the Murchison meteorite. Geochimica et Cosmochimica Acta 39:15711573.
  • Rodrigo A. A., Lorenz H., and Seidel-Morgenstern A. 2004. Online monitoring of preferential crystallization of enantiomers. Chirality 16:499508.
  • Scott J. H., O’Brien D. M., Emerson D., Sun H., McDonald G. D., Salgado A., and Fogel M. L. 2006. An examination of the carbon isotope effects associated with amino acid biosynthesis. Astrobiology 6:867880.
  • Smith G. G. and Reddy G. V. 1989. Effect of the side chain on the racemization of amino acids in aqueous solution. Journal of Organic Chemistry 54:45294535.
  • Soai K., Shibata T., Morioka H., and Choji K. 1995. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767768.
  • Viedma C. 2001. Enantiomeric crystallization from DL-aspartic and DL-glutamic acids: Implications for biomolecular chirality in the origin of life. Origins of Life and Evolution of the Biosphere 31:501509.
  • Viedma C., Ortiz J. E., de Torres T., Izumi T., and Blackmond D. 2008. Evolution of solid phase homochirality for a proteinogenic amino acid. Journal of American Chemical Society 130:1527415275.
  • Wolman Y., Haverland W. J., and Miller S. L. 1972. Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proceedings of the National Academy of Sciences 69:809811.
  • Zolensky M. and McSween H. Y. 1988. Aqueous alteration. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 114143.
  • Zolensky M. E., Nakamura K., Gounelle M., Mikouchi T., Kasama T., Tachikawa O., and Tonui E. 2002. Mineralogy of Tagish Lake; an ungrouped type 2 carbonaceous chondrite. Meteoritics & Planetary Science 37:737761.