SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O’D.1994. Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochimica et Cosmochimica Acta58:34513467.
  • Alexander C. M. O’D. 1996. Recycling and volatile loss in chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. New York: Cambridge University Press. pp. 233241.
  • Alexander C. M. O’D. and Ebel D.2012. Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved?Meteoritics & Planetary Science47:11571175.
  • Alexander C. M. O’D., Grossman J. N., Ebel D. S., and Ciesla F. J.2008. The formation conditions of chondrules and chondrites. Science320:16171619.
  • Asphaug E., Jutzi M., and Movshovovitz N.2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters308:369379.
  • Bland P. A., Alard O., Benedix G. K., Kearsley A. T., Menzie O. N., Watt L. E., and Rogers N. W.2005. Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences102:1375513760.
  • Boss A. P. 1996. A concise guide to chondrule formation. In Chondrules and the protoplanetary disk, edited by Jones R. and Scott E. Cambridge: Cambridge University Press. pp. 257263.
  • Bridges J. C., Franchi I. A., Hutchison R., Sexton A. S., and Pillinger C. T.1998. Correlated mineralogy, chemical compositions, oxygen isotopic compositions and the sizes of chondrules. Earth and Planetary Science Letters155:183196.
  • Chambers J. 2006. Meteoritic diversity and planetesimal formation. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 487497.
  • Chambers J. E.2010. Planetesimal formation by turbulent concentration. Icarus208:505517.
  • Clayton R. N.1993. Oxygen isotopes in meteorites. Annual Reviews in Earth and Planetary Sciences21:115149.
  • Clayton R. N.2002. Self-shielding in the solar nebula. Nature415:860861.
  • Cohen B. A., Hewins R. H., and Alexander C. M. O’D.2004. The formation of chondrules by open-system melting of nebular condensates. Geochimica et Cosmochimica Acta68:16611675.
  • Connolly H. C., Jr. and Love S. G.1998. The formation of chondrules: Petrologic tests of the shock wave model. Science280:6267.
  • Cuzzi J. N. and Alexander C. M. O’D.2006. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature441:483485.
  • Cuzzi J. N. and Weidenschilling S. J. 2006. Particle-gas dynamics and primary accretion. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 353381.
  • Cuzzi J. N., Hogan R. C., and Shariff K.2008. Toward planetesimals: Dense clumps in the protoplanetary nebula. The Astrophysical Journal687:14321447.
  • Dauphas N. and Chaussidon M.2011. A perspective from extinct radionuclides on a young stellar object: The sun and its accretion disk. Annual Reviews of Earth and Planetary Science39:351386.
  • Desch S. J. and Connolly H. C., Jr.2002. A model for the thermal processing of particles in the solar nebula shocks: Applications to the cooling rates of chondrules. Meteoritics & Planetary Science37:183208.
  • Desch S. J., Ciesla F. J., Hood L. L., and Nakamoto T. 2005. Heating of chondritic materials in solar nebula shocks. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco, CA: ASP Conference Series 341: pp. 849872.
  • Desch S. J., Morris M. A., Connolly H. C., and Boss A. P.2012. The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science47:11391156.
  • Ebel D. S. and Grossman L.2000. Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta64:339366.
  • Faure F., Tissandier L., Libourel G., Mathieu R., and Welsch B.2011. Origin of glass inclusions hosted in magnesian porphyritic olivines chondrules: Deciphering planetesimal compositions. Earth and Planetary Science Letters319320: 1–8.
  • Fedkin A. V. and Grossman L. 2005. The fayalite content of chondritic olivine: Obstacle to understanding the condensation of rocky material. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 279294.
  • Georges P., Libourel G., and Deloule E.2000. Experimental constraints on alkali condensation in chondrule formation. Meteoritics & Planetary Science35:11831188.
  • Greeney S. and Ruzicka A. 2004. Relict forsterite in chondrules: Implications for cooling rates (abstract #1426). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Grossman J. N. 1988. Formation of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 680696.
  • Grossman J., Rubin A. E., Nagahara N., and King E. A.1988. Properties of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 619659.
  • Grossman J. N., Alexander C. M. O’D, Wang J., and Brearley A. J.2002. Zoned chondrules in Semarkona: Evidence for high and low temperature processing. Meteoritics & Planetary Science37:4974.
  • Grossman L., Fedkin A. V., and Simon S. B.2012. Formation of the first oxidized iron in the solar system. Meteoritics & Planetary Science This issue, doi: 10.1111/j.1945-5100.2012.01353.x.
  • Hewins R. H. 1988. Experimental studies of chondrules. In Meteorites and the early solar system, edited by Kerridge J. F., and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 660679.
  • Hewins R. H.1997. Chondrules. Annual Review of Earth and Planetary Sciences25:6183.
  • Hewins R. H. and Fox G. F.2004. Chondule texture and precursor grain size: An experimental study. Geochimica et Cosmochimica Acta68:917926.
  • Hewins R. H. and Radomsky P. M.1990. Temperature conditions for chondrule formation. Meteoritics25:309318.
  • Hewins R. H., Yu Y., Zanda B., and Bourot-Denise M.1997. Do nebular fractionations, evaporative losses, or both, influence chondrule compositions?Antarctic Meteorite Research10:275298.
  • Hewins R. H., Connolly H. C., Jr., Lofgren G. E., and Libourel G. 2005. Experimental constraints on chondrule formation. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: ASP Conference Series 341, pp. 286316.
  • Hewins R. H., Ganguly J., and Mariani E. 2009. Diffusion modeling of cooling rates of relict olivine in Semarkona chondrules (abstract #1513). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Hewins R. H., Zanda B., and Bendersky C.2012. Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochmica Acta78:117.
  • Hezel D. C. and Palme H.2008. Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters265:716725.
  • Hezel D. C. and Palme H.2010. The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters294:8593.
  • Huang S., Lu J., Prinz M., Weisberg M. K., Benoit P. H., and Sears D. W. G.1996. Chondrules: Their diversity and the role of open-system processes during their formation. Icarus122:316346.
  • Hutchison R., Bridges J. C., and Gilmour J. D. 2005. Chondrules: Chemical, petrographic and chronologic clues to their origin by impact. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco, CA: ASP Conference Series 341, pp. 933950.
  • Hutson M. and Ruzicka A.2000. A multi-step model for the origin of E3 (enstatite) chondrites. Meteoritics & Planetary Science35:601608.
  • Jones R. H. 1996. Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. New York: Cambridge University Press. pp. 163172.
  • Jones R. H.2012. Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics & Planetary Science47:11761190, doi 10.111/j.1945-5100.2011.01327.x.
  • Jones R. H. and Danielson L. R.1997. A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteoritics & Planetary Science32:753760.
  • Jones R. H. and Lofgren G. E.1993. A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics28:213221.
  • Jones R. H., Lee T., Connolly H. C., Jr., Love S. G., and Sheng H. 2000. Formation of chondrules and CAIs: Theory vs. observation. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: The University of Arizona Press. pp. 927962.
  • Kita N. T. and Ushikubo T.2012. Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science47:11081119.
  • Kita N. T., Huss G. R., Tachibana S., Amelin Y., Nyquist L. E., and Hutcheon I. D. 2005. Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: ASP Conference Series 341, pp. 558587.
  • Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H., and Valley J. W.2010. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta74:66106635.
  • Kracher A., Scott E. R. D., and Keil K.1984. Relict and other anomalous grains in chondrules: Implications for chondrule formation. Journal of Geophysical Research89:B559B566.
  • Krot A. N., Meibom A., Russell S. S., Alexander C. M. O’D., Jeffries T. E., and Keil K.2001. A new astrophysical setting for chondrule formation. Science291:17761779.
  • Krot A. N., Libourel G., Goodrich C. A., and Petaev M. I.2004. Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation during chondrule formation. Meteoritics & Planetary Science39:19311955.
  • Krot A. N., Yurimoto H., Hutcheon I. D., and MacPherson G. J.2005a. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature436:989992.
  • Krot A. N., Hutcheon I. D., Scott E. R. D., Libourel G., Chaussidon M., Aléon J., and Petaev M. I.2005b. Evolution of oxygen isotopic composition in the inner solar nebula. The Astrophysical Journal622:13331342.
  • Krot A. N., Yurimoto H., McKeegan K. D., Leshin L., Chuassidon M., Libourel G., Yoshitake M., Huss G. R., Guan Y., and Zanda B.2006. Oxygen isotopic compositions of chondrules: Implications for understanding oxygen isotopic evolution of the solar nebula. Chemie der Erde66:249276.
  • Krot A. N., Amelin Y., Bland P., Ciesla F. J., Connelly J., Davis A. M., Huss G. R., Hutcheon I. D., Makide K., Nagashima K., Nyquist L. E., Russell S. S., Scott E. R. D., Thrane K., Yurimoto H., and Yin Q.-Z.2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta73:49634997.
  • Kurahashi E., Kita N. T., Nagahara H., and Morishita Y.2008. 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta72:38653882.
  • Lauretta D. S., Nagahara H., and Alexander C. M. O’D. 2006. Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 431459.
  • Lewis J. S. 1995. Physics and chemistry of the solar system. San Diego: Academic Press. 556 p.
  • Libourel G. and Chaussidon M.2011. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters301:921.
  • Libourel G. and Krot A. N.2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters254:18.
  • Libourel G., Krot A. N., and Tissandier L.2006. Role of gas-melt interaction during chondrule formation. Earth and Planetary Science Letters251:232240.
  • Lodders K.2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal591:12201247.
  • Lofgren G. E. 1996. A dynamic crystallization model for chondrule melts. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. New York: Cambridge University Press. pp. 187196.
  • Lugmair G. W. and Shukolyukov A.2001. Early solar system events and timescales. Meteoritics & Planetary Science36:10171026.
  • Lyons J. R. and Young E. D.2005. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature435:317320.
  • Lyons J. R., Bergin E. A., Ciesla F. J., Davis A. M., Desch S. J., Hashizume K., and Lee J. E.2009. Timecales for the evolution of oxygen isotopic compositions in the solar nebula. Geochimica et Cosmochimica Acta73:49985017.
  • Metzler K. 2011a. Ultra-rapid chondrite formation by hot chondrule accretion? Evidence from UOC’s (abstract #5178). 74th Annual Meeting of the Meteoritical Society. CD-ROM.
  • Metzler K.2011b. Chondrite accretion within hours to a few days after chondrule formation? (abstract #9111), Workshop on the Formation of the First Solids in the Solar System, Nov. 7–9, Kauai, Hawaii.
  • Nagahara H.1981. Evidence for secondary origin of chondrules. Nature292:135136.
  • Nagahara H. and Ozawa K.2012. The role of exchange reactions in oxygen isotope fractionation during CAI and chondrule formation. Meteoritics & Planetary Science47:12091228.
  • Nagahara H., Kita N. T., Ozawa K., and Morishita Y.2009. Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochimica et Cosmochimica Acta72:14421465.
  • Rambaldi E. R.1981. Relict grains in chondrules. Nature293:558561.
  • Rubin A. E.2000. Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews50:327.
  • Rudraswami N. G., Ushikubo T., Nakashima D., and Kita N. T.2011. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta75:75967611.
  • Ruzicka A. 1988. Pre-agglomeration metasomatism of chondrules in the Chainpur (LL3.4) chondrite. M.S. thesis, State University of New York at Stony Brook, Stony Brook, New York, 108 p.
  • Ruzicka A., Hiyagon H., Hutson M., and Floss C.2007. Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs. Earth and Planetary Science Letters257:274289.
  • Ruzicka A., Floss C., and Hutson M.2008. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochimica et Cosmochimica Acta72:55305557.
  • Ruzicka A., Floss C., and Hutson M.2012. Agglomeratic olivine (AO) objects in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules. Geochimica et Cosmochimica Acta76:103124.
  • Ryerson F. J., Durham W. B., Cherniak D. J., and Lanford W. A.1989. Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. Journal of Geophysical Research94:41054118.
  • Sanders I. S. 1996. A chondrule-forming scenario involving molten planetesimals. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. New York: Cambridge University Press. pp. 327334.
  • Sanders I. S. 2011. Early planetesimals as reservoirs for chondrule materials (abstract #2484). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Sanders I. S. and Scott E. R. D.2011. Chondrules, chondrites, and chondritic asteroids: Planetary building blocks or debris from planetary accretion? (abstract #9126), Workshop on the Formation of the First Solids in the Solar System, Nov. 7–9, Kauai, Hawaii.
  • Sanders I. S. and Scott E. R. D.2012. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals. Meteoritics & Planetary Science, This issue.
  • Sanders I. S. and Taylor G. J. 2005. Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: ASP Conference Series 341: 915932.
  • Scott E. R. D. and Krot A. N. 2005a. Chondritic meteorites and the high-temperature nebular origins of their components. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: ASP Conference Series 341, pp. 1553.
  • Scott E. R. D. and Krot A. N. 2005b. Chondrites and their components. In Meteorites, comets, and planets, edited by Davis A. M. Treatise on Geochemistry, vol. 1. Amsterdam: Elsevier. pp. 143200.
  • Sears D. W. G. 2004. The origin of chondrules and chondrites. Cambridge: Cambridge University Press. 209 p.
  • Sears D. W. G., Huang S., and Benoit P. H. 1996. Open-system behavior during chondrule formation. In Chondrules and the protoplanetary disk, edited by Hewins R. H., Jones R. H., and Scott E. New York: Cambridge University Press. pp. 221232.
  • Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T., and Nagahara H. 2011. Oxygen isotopic measurements of phenocrysts in chondrules from the primitive carbonaceous chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs (abstract #1426). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Tenner T. J., Nakashima D., Ushikubo T., Kita N. T., and Weisberg M. K. 2012. Oxygen isotopes of chondrules in the Queen Alexandra Range 99177 CR3 chondrite: Further evidence for systematic relationships between chondrule Mg# and Δ17O and the role of ice during chondrule formation (abstract #2127). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Tissandier L., Libourel G., and Robert F.2002. Gas-melt interactions and their bearing on chondrule formation. Meteoritics & Planetary Science37:13771389.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W. 2011. Primordial oxygen isotope reservoirs from Acfer 094 carbonaceous chondrite (abstract #1183). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Ushikubo T., Kimura M., Kita N. T., and Valley J. W.2012. Primordial oxygen isotope reservoirs in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Comsochimica Acta90:242264.
  • Villeneuve J., Chaussidon M., and Libourel G.2011. Magnesium isotopes constraints on the origin of Mg-rich olivines from the Allende chondrite: Nebular versus planetary?Earth and Planetary Science Letters301:107116.
  • Wasson J. T.1993. Constraints on chondrule origins. Meteoritics28:1428.
  • Wasson J. T., Rubin A. E., and Yurimoto H.2004. Evidence in CO3.0 chondrules for a drift in the O isotopic composition in the inner solar nebula. Meteoritics & Planetary Science39:15911598.
  • Weidenschilling S. J. and Cuzzi J. N. 2006. Accretion dynamics and timescales: Relation to chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 473485.
  • Weidenschilling S. J., Marzari F., and Hood L. L.1998. The origin of chondrules at jovian resonances. Science279:681684.
  • Weisberg M. K. and Prinz M. 1996. Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the protoplanetary disk, edited by Jones R. and Scott E. Cambridge: Cambridge University Press. pp. 119127.
  • Weisberg M. K., Ebel D. S., Connolly H. C., Jr., Kita N. T., and Ushikubo T.2011. Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochimica et Cosmochimica Acta75:65566569.
  • Whattam S. A. and Hewins R. H.2009. Granoblastic olivine aggregates as precursors of Type I chondrules: An experimental test. Geochimica et Cosmochimica Acta73:54605482.
  • Whattam S. A., Hewins R. H., Cohen B. A., Seaton N. C., and Prior D. J.2008. Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condenstaes?Earth and Planetary Science Letters269:200211.
  • Wood J. A. 1985. Meteoritic constraints on processes in the solar nebula. In Protostars & planets II, edited by Black D. C. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 687702.
  • Wood J.2005. The chondrite types and their origins. In Chondrites and the protoplanetary disk, edited by Krot A. N., Scott E. R. D., and Reipurth B. San Francisco: ASP Conference Series 341, pp. 953971.
  • Yurimoto H. and Kuramoto K.2004. Molecular cloud origin for the oxygen-isotope heterogeneity in the solar system. Science305:17631766.
  • Zanda B.2004. Chondrules. Earth and Planetary Science Letters224:117.