SEARCH

SEARCH BY CITATION

References

  • Alexander C. M. O'D., Fogel M. L., Yabuta H., and Cody G. D. 2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et Cosmochimica Acta 71:43804403.
  • Allamandola L. J., Sandford S. A., and Valero G. J. 1988. Photochemical and thermal evolution of interstellar/ precometary ice analogs. Icarus 76:225252.
  • Barrientos C., Redondo P., Largo L., Rayón V. M., and Largo A. 2012. Gas-phase synthesis of precursors of interstellar glycine: A computational study of the reactions of acetic acid with hydroxylamine and its ionized and protonated derivatives. The Astrophysical Journal 748:99105.
  • Belloche A., Menten K. M., Comito C., Muller H. S. P., Schilke P., Ott J., Thorwirth S., and Hieret C. 2008. Detection of amino acetonitrile in Sgr B2(N). Astronomy & Astrophysics 482:179196.
  • Belloche A., Garrod R. T., Müller H. S. P., Menten K. M., Comito C., and Schilke P. 2009. Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). Astronomy & Astrophysics 499:215232.
  • Bergman P., Parise B., Liseau R., and Larsson B. 2011. Deuterated formaldehyde in ρ Ophiuchi A. Astronomy & Astrophysics 527:A39.
  • Bernstein M. P., Dworkin J. P., Sandford S. A., Cooper G. W., and Allamandola L. J. 2002. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401403.
  • Blagojevic V., Petrie S., and Bohme D. K. 2003. Gas-phase syntheses for interstellar carboxylic and amino acids. Monthly Notices of the Royal Astronomical Society 339:L7L11.
  • Blake G. A., Sutton E. C., Masson C. R., and Phillips T. G. 1987. Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. The Astrophysical Journal 315:621645.
  • Bockelée-Morvan D., Biver N., Jehin E., Cochran A. L., Wiesemeyer H., Manfroid J., Hutsemékers D., Arpigny C., Boissier J., Cochran W., Colom P., Crovisier J., Milutinovic N., Moreno R., Prochaska J. X., Ramirez I., Schulz R., and Zucconi J.-M. 2008. Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from Comet 17P/Holmes. The Astrophysical Journal 679:L49L52.
  • Bossa J. B., Theule P., Duvernay F., and Chiavassa T. 2009. NH2CH2OH thermal formation in interstellar ices contribution to the 5–8 μm region toward embedded protostars. The Astrophysical Journal 707:15241532.
  • Brand W. A., Tegtmeyer A. R., and Hilkert A. 1994. Compound-specific isotope analysis: Extending toward 15N14N and 18O16O. Organic Geochemistry, 21:585594.
  • Briani G., Gounelle M., Marrocchi Y., Mostefaoui S., Leroux H., Quirico E., and Meibom A. 2009. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proceedings of the National Academy of Sciences 106:1052210527.
  • Burton A. S., Elsila J. E., Callahan M. P., Martin M. G., Glavin D. P., Johnson N. M., and Dworkin J. P. 2012a. A propensity for n-ω-amino acids in thermally altered Antarctic meteorites. Meteoritics & Planetary Science 47:374386.
  • Burton A. S., Stern J. C., Elsila J. E., Glavin D. P., and Dworkin J. P. 2012b. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews 41:54595472.
  • Busemann H., Young A. F., Alexander C. M. O'D., Hoppe P., Mukhopadhyay S., and Nittler L. R. 2006. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727730.
  • Ceccarelli C., Caselli P., Herbst E., Tielens A. G. G. M., and Caux E. 2007. Extreme deuteration and hot corinos: The earliest chemical signatures of low-mass star formation. In Protostars and planets V, edited by Reipurth B., Jewitt D., and Keil K. Tucson, Arizona: The University of Arizona Press. pp. 47–62.
  • Charnley S. B. and Rodgers S. D. 2002. The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. The Astrophysical Journal 569:L133L137.
  • Charnley S. B. and Rodgers S. D. 2008. Interstellar reservoirs of cometary matter. Space Science Reviews 138:5973.
  • Charnley S. B., Rodgers S. D., and Ehrenfreund P. 2001. Gas-grain chemical models of star-forming molecular clouds as constrained by ISO and SWAS observations. Astronomy & Astrophysics 378:10241036.
  • Charnley S. B., Ehrenfreund P., Millar T. J., Boogert A. C. A., Markwick A. J., Butner H. M., Ruiterkamp R., and Rodgers S. D. 2004. Observational tests for grain chemistry: Posterior isotopic labelling. Monthly Notices of the Royal Astronomical Society 347:157162.
  • Congiu E., Fedoseev G., Ioppolo S., Dulieu F., Chaabouni H., Baouche S., Lemaire J. L., Laffon C., Parent P., Lamberts T., Cuppen H. M., and Linnartz H. 2012. NO ice hydrogenation: A solid pathway to NH2OH formation in space. The Astrophysical Journal Letters 750:L12.
  • Cooper G. W. and Cronin J. R. 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochimica et Cosmochimica Acta 59:10031015.
  • Cooper G., Dugas A., Byrd A., Chang P. M., and Washington N. 2005. Keto-acids in carbonaceous meteorites (abstract #2381). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Cronin J. R. and Chang S. 1993. Organic matter in meteorites: Molecular and isotopic analysis of the Murchison meteorite. In The chemistry of life’s origins, edited by Greenberg J. M., Mendoza C. X., and Pirronelle V. Dordrecht, the Netherlands: Kluwer Academic Publishers. pp. 209258.
  • Cronin J. R. and Moore C. B. 1971. Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172:13271329.
  • Cronin J. R. and Pizzarello S. 1983. Amino acids in meteorites. Advances in Space Research 3:518.
  • Cronin J. R. and Pizzarello S. 1997. Enantiomeric excesses in meteoritic amino acids. Science 275:951955.
  • Docherty G., Jones V., and Evershed R. P. 2001. Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ13C analysis of small polyfunctional compounds. Rapid Communications in Mass Spectrometry 15:730738.
  • d’Hendecourt L. B., Allamandola L. J., and Greenberg J. M. 1985. Time dependent chemistry in dense molecular clouds. I—Grain surface reactions, gas/grain interactions and infrared spectroscopy. Astronomy & Astrophysics 152:130150.
  • Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proceedings of the National Academy of Sciences 98:21382141.
  • Elsila J. E., Dworkin J. P., Bernstein M. P., Martin M. P., and Sandford S. A. 2007. Mechanisms of amino acid formation in interstellar ice analogs. The Astrophysical Journal 660:911918.
  • Elsila J. E., Glavin D. P., and Dworkin J. P. 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics & Planetary Science 44:13231330.
  • Elsila J. E., Callahan M. P., Glavin D. P., Dworkin J. P., and Brueckner H. 2011. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: Assessing the potential for meteoritic contamination. Astrobiology 11:123133.
  • Engel M. H. and Macko S. A. 1997. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265268.
  • Engel M. H., Macko S. A., and Silfer J. A. 1990. Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:4749.
  • Enoch M. L., Neal J. Evans I., Sargent A. I., Glenn J., Rosolowsky E., and Myers P. 2008. The mass distribution and lifetime of prestellar cores in Perseus, Serpens, and Ophiuchus. The Astrophysical Journal 684:12401259.
  • Epstein S., Krishnamurthy R. V., Cronin J. R., Pizzarello S., and Yuen G. U. 1987. Unusual stable isotope ratios in amino acids and carboxylic acid extracts from the Murchison meteorite. Nature 326:477479.
  • Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., and Graham G. A. 2004. Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle. Science 303:13551358.
  • Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., Graham G. A., and Lea A. S. 2006. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study. Geochimica et Cosmochimica Acta 70:23712399.
  • Garrod R. T., Weaver S. L. W., and Herbst E. 2008. Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model. The Astrophysical Journal 682:283302.
  • Gerin M., Marcelino N., Biver N., Roueff E., Coudert L. H., Elkeurti M., Lis D. C., and Bockelée-Morvan D. 2009. Detection of 15NH2D in dense cores: A new tool for measuring the 14N/15N ratio in the cold ISM. Astronomy & Astrophysics 498:L9L12.
  • Glavin D. P. and Dworkin J. P. 2009. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences 106:54875492.
  • Glavin D. P., Dworkin J. P., Aubrey A., Botta O., Doty J. H., III, Martins Z., and Bada J. L. 2006. Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science 41:889902.
  • Glavin D. P., Callahan M. P., Dworkin J. P., and Elsila J. E. 2010. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics & Planetary Science 45:19481972.
  • Glavin D. P., Elsila J. E., Burton A. S., Callahan M. P., Dworkin J. P., Hilts R. W., and Herd C. D. K. 2012. Unusual nonterrestrial l-proteinogenic amino acid excesses in the Tagish Lake meteorite. Meteoritics & Planetary Science 47:13471364.
  • Hayatsu R., Studier M. H., and Anders E. 1971. Origin of organic matter in early solar system—IV. Amino acids: Confirmation of catalytic synthesis by mass spectrometry. Geochimica et Cosmochimica Acta 35:939951.
  • Herbst E. and van Dishoeck E. F. 2009. Complex organic interstellar molecules. Annual Review of Astronomy and Astrophysics 47:427480.
  • Hirota T., Ikeda M., and Yamamoto S. 2001. Observations of DNC and HN13C in dark cloud cores. The Astrophysical Journal 547:814828.
  • Huber C. and Wächtershäuser G. 2003. Primordial reductive amination revisited. Tetrahedron Letters 44:16951697.
  • Hudson R. L. and Moore M. H. 1999. Laboratory studies of the formation of methanol and other organic molecules by water+carbon monoxide radiolysis: Relevance to comets, icy satellites, and interstellar ices. Icarus 140:451461.
  • Hudson R. L., Lewis A. S., Moore M. H., Dworkin J. P., and Martin M. G. 2009. Enigmatic isovaline: Investigating the stability, racemization, and formation of a non-biological amino acid. Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life 420:157162.
  • Hutsemékers D., Manfroid J., Jehin E., Arpigny C., Cochran A., Schulz R., Stüwe J. A., and Zucconi J.-M. 2005. Isotopic abundances of carbon and nitrogen in Jupiter-family and Oort Cloud comets. Astronomy & Astrophysics 440:L21L24.
  • Kallemeyn G. W., Rubin A. E., and Wasson J. T. 1994. The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochimica et Cosmochimica Acta 58:28732888.
  • Kisiel Z., Pszczólkowski L., Bialkowska-Jaworska E., and Charnley S. B. 2007. The millimeter wave rotational spectrum of pyruvic acid. Journal of Molecular Spectroscopy 241:220229.
  • Kisiel Z., Pszczolkowski L., Bialkowska-Jaworska E., and Charnley S. B. 2009. Towards quantifying the prevalence of primitive membranes in the galaxy: The millimeter-wave rotational spectrum of pyruvic acid. Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life 420:8792.
  • Kuan Y.-J., Charnley S. B., Huang H.-C., Tseng W.-L., and Kisiel Z. 2003. Interstellar glycine. The Astrophysical Journal 593:848867.
  • Kvenvolden K., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I. R., and Moore C. 1970. Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 288:923926.
  • Lancet M. S. and Anders E. 1970. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170:980982.
  • Langer W. D., Graedel T. E., Frerking M. A., and Armentrout P. B. 1984. Carbon and oxygen isotope fractionation in dense interstellar clouds. The Astrophysical Journal 277:581604.
  • Largo A., Redondo P., and Barrientos C. 2004. Theoretical study of possible ion-molecule reactions leading to precursors of glycine in the interstellar medium. International Journal of Quantum Chemistry 98:355360.
  • Manfroid J., Jehin E., Hutsemékers D., Cochran A., Zucconi J.-M., Arpigny C., Schulz R., and Stüwe J. A. 2005. Isotopic abundance of nitrogen and carbon in distant comets. Astronomy & Astrophysics 432:L5L8.
  • Martins Z., Alexander C. M. O'D., Orzechowska G. E., Fogel M. L., and Ehrenfreund P. 2007. Indigenous amino acids in primitive CR meteorites. Meteoritics & Planetary Science 42:21252136.
  • Messenger S. 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968971.
  • Milam S. N. and Charnley S. B. 2012. Observations of nitrogen fractionation in prestellar cores: Nitriles tracing interstellar chemistry (abstract #2618). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Miller S. L. 1957. The mechanism of synthesis of amino acids by electric discharges. Biochimica et Biophysica Acta 23:480489.
  • Monroe A. A. and Pizzarello S. 2011. The soluble organic compounds of the Bells meteorite: Not a unique or unusual composition. Geochimica et Cosmochimica Acta 75:75857595.
  • Muñoz Caro G. M., Melerhenrich U. J., Schutte W. A., Barbier B., Segovia A. A., Rosenbauer H., Thiemann W. H.-P., Brack A., and Greenberg J. M. 2002. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403406.
  • Nuth J. A., Charnley S. B., and Johnson N. M. 2006. Chemical processes in the interstellar medium: Source of the gas and dust in the primitive solar nebula. In Meteorites and the early solar system, edited by Lauretta D. S. and McSween H. Y., Jr. Tucson, Arizona: The University of Arizona Press. pp. 147167.
  • Oba Y., Watanabe N., Kouchi A., Hama T., and Pirronello V. 2010. Experimental study of CO2 formation by surface reactions of non-energetic OH radicals with CO molecules. The Astrophysical Journal Letters 712:L174L178.
  • O’Brien D. M., Fogel M. L., and Boggs C. L. 2002. Renewable and nonrenewable resources: Amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the National Academy of Sciences 99:44134418.
  • Oró J., Gibert J., Lichtenstein H., Wikstrom S., and Flory D. A. 1971. Amino-acids, aliphatic and aromatic hydrocarbons in the Murchison meteorite. Nature 230:105106.
  • Pagani L., Roueff E., and Lesaffre P. 2011. Ortho-H2 and the age of interstellar dark clouds. The Astrophysical Journal Letters 739:L35.
  • Parise B., Ceccarelli C., Tielens A. G. G. M., Herbst E., Lefloch B., Caux E., Castets A., Mukhopadhyay I., Pagani L., and Loinard L. 2002. Detection of doubly-deuterated methanol in the solar-type protostar IRAS 16293-2422. Astronomy & Astrophysics 393:L49L53.
  • Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4:6974.
  • Pizzarello S. 2002. Catalytic syntheses of amino acids: Significance for nebular and planetary chemistry (abstract #1236). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Pizzarello S. and Cooper G. W. 2001. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorites. Meteoritics & Planetary Science 36:897909.
  • Pizzarello S. and Holmes W. 2009. Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules. Geochimica et Cosmochimica Acta 73:21502162.
  • Pizzarello S. and Huang Y. S. 2005. The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors. Geochimica et Cosmochimica Acta 69:599605.
  • Pizzarello S. and Shock E. 2010. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology 2:a002105.
  • Pizzarello S. and Williams L. B. 2012. Ammonia in the early solar system: An account from carbonaceous meteorites. The Astrophysical Journal 749:161.
  • Pizzarello S., Krishnamurthy R. V., Epstein S., and Cronin J. R. 1991. Isotopic analyses of amino acids from the Murchison meteorite. Geochimica et Cosmochimica Acta 55:905910.
  • Pizzarello S., Feng X., Epstein S., and Cronin J. R. 1994. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: Ammonia, amines, amino acids, and polar hydrocarbons. Geochimica et Cosmochimica Acta 58:55795587.
  • Pizzarello S., Huang Y., and Fuller M. 2004. The carbon isotopic distribution of Murchison amino acids. Geochimica et Cosmochimica Acta 68:49634969.
  • Pizzarello S., Huang Y., and Alexandre M. R. 2008. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proceedings of the National Academy of Sciences 105:37003704.
  • Pulliam R. L., McGuire B. A., and Remijan A. J. 2012. A search for hydroxylamine (NH2OH) toward select astronomical sources. The Astrophysical Journal 751:1.
  • Robert F. and Epstein S. 1982. The concentration and isotopic composition of hydrogen, carbon, and nitrogen in carbonaceous meteorites. Geochimica et Cosmochimica Acta 46:8195.
  • Roberts H., Herbst E., and Millar T. J. 2003. Enhanced deuterium fractionation in dense interstellar cores resulting from multiply deuterated H3+. The Astrophysical Journal Letters 591:L41L44.
  • Rodgers S. D. and Charnley S. B. 2002. A model of the chemistry in cometary comae: Deuterated molecules. Monthly Notices of the Royal Astronomical Society 330:660674.
  • Rodgers S. D. and Charnley S. B. 2008a. Nitrogen isotopic fractionation of interstellar nitriles. The Astrophysical Journal 689:14481455.
  • Rodgers S. D. and Charnley S. B. 2008b. Nitrogen superfractionation in dense cloud cores. Monthly Notices of the Royal Astronomical Society 385:L48L52.
  • Sandford S. A., Bernstein M. P., and Dworkin J. P. 2001. Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteoritics & Planetary Science 36:11171133.
  • Sears D. W. G. and Dodd R. T. 1988. Overview and classification of meteorites. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 331.
  • Snow J. L., Orlova G., Blagojevic V., and Bohme D. K. 2007. Gas-phase ionic syntheses of amino acids: β versus α. Journal of the American Chemical Society 129:99109917.
  • Snyder L. E., Lovas F. J., Hollis J. M., Friedel D. N., Jewell P. R., Remijan A., Ilyushin V. V., Alekseev E. A., and Dyubko S. F. 2005. A rigorous attempt to verify interstellar glycine. The Astrophysical Journal 619:914930.
  • Terzieva R. and Herbst E. 2000. The possibility of nitrogen isotopic fractionation in interstellar clouds. Monthly Notices of the Royal Astronomical Society 317:563568.
  • Theule P., Borget F., Mispelaer F., Danger G., Duvernay F., Guillemin J. C., and Chiavassa T. 2011. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astronomy & Astrophysics 534:A64.
  • Tielens A. G. G. M., Allamandola L. J., and Sandford A. J. 1991. Laboratory, observational, and theoretical studies of interstellar ices. In Solid state astrophysics, Proceedings of the Enrico Fermi International School of Physics, Course CXI, edited by Bussoletti E. and Strazzulla G. Amsterdam: North Holland Press. pp. 2958.
  • Wirström E. S., Geppert W. D., Hjalmarson Å., Persson C. M., Black J. H., Bergman P., Millar T. J., Hamberg M., and Vigren E. 2011. Observational tests of interstellar methanol formation. Astronomy & Astrophysics 533:A24.
  • Wirström E. S., Charnley S. B., Cordiner M. A., and Milam S. N. 2012a. Spin-state-dependent ion-molecule chemistry as the origin of 15N and D isotopic anomalies in primitive matter (abstract #2457). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Wirström E. S., Charnley S. B., Geppert W. D., and Persson C. M. 2012b. Observations of carbon isotopic fractionation in interstellar formaldehyde (abstract #1161). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Woon D. E. 2002. Pathways to glycine and other amino acids in ultraviolet-irradiated astrophysical ices determined via quantum chemical modeling. The Astrophysical Journal 571:L177L180.
  • Yoshino D., Hayatsu R., and Anders E. 1971. Origin of organic matter in early solar system—III. Amino acids: Catalytic synthesis. Geochimica et Cosmochimica Acta 35:927938.
  • Yuen G. U., Pecore J. A., Kerridge J. F., Pinnavaia T. J., Rightor E. G., Flores J., Wedeking K., Mariner R., Des Marais D. J., and Chang S. 1990. Carbon isotope fractionation in Fischer-Tropsch type reactions. Proceedings of the 21st Lunar and Planetary Science Conference. pp. 13671368.
  • Zheng W. and Kaiser R. I. 2010. Formation of hydroxylamine (NH2OH) in electron-irradiated ammonia–water ices. The Journal of Physical Chemistry A 114:52515255.
  • Zolensky M., and McSween H. Y. 1988. Aqueous alteration. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 114143.
  • Zolensky M. E., Mittlefehldt D. W., Lipschutz M. E., Wang M.-S., Clayton R. N., Mayeda T. K., Grady M. M., Pillinger C., and B D. 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta 61:50995115.