SEARCH

SEARCH BY CITATION

References

  • Asay J. R. and Shahinpoor M. 1993. High pressure shock compression of solids. Berlin: Springer. 393 p.
  • Berggren R. E. and Reynolds R. M. 1970. The light-gas-gun model launcher. In Ballistic range technology, edited by Canning T. N., Seiff A., and James C. S. Neutilly-sur-Seine: North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development. pp. 954.
  • Bogdanoff D. W. 1998. CFD modelling of bore erosion in two-stage light gas guns. NASA Ames Research Center, NASA/TM–1998-112236. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990007798_1998349187.pdf
  • Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192198.
  • Burchell M. J., Cole M. J., McDonnell J. A. M., and Zarnecki J. C.1999. Hypervelocity impact studies using the 2MV Van de Graaff dust accelerator and two-stage light gas gun of the University of Kent at Canterbury. Measurement Science and Technology10:4150.
  • Carver D., Campbell L. L., and Roebuck B.2008. Large-scale, hypervelocity, high-fidelity interceptor lethality development in AEDC’s range G. International Journal of Impact Engineering35:14591464.
  • Chhabildas L. C., Davison L. and Horie Y. 2005. High-pressure shock compression of solids VIII. Berlin: Springer. 380 p.
  • Cornelisen C. J. and Watts E. T. 1998. Results of two-stage light-gas gun development efforts and hypervelocity impact tests of advanced thermal protection materials. NASA Ames Research Center, NASA TM-1998-112234. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980236871_1998397336.pdf
  • Crozier W. D. and Hume W.1957. High-velocity light-gas gun. Journal of Applied Physics28:892898.
  • Glenn L. A. 1987. Performance analysis of the two stage light gas gun. In Shock waves in condensed matter, edited by Schmidt S. C. and Holmes N. C. Amsterdam, the Netherlands: Elsevier Science Publishers. pp. 653656.
  • Hermalyn B. and Schultz P. H. 2011. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth. Icarus216:269279. doi: 10.1016/j.icarus.2011.09.008
  • Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., Lexow B., and Deutsch A. 2013. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • McDonnell J. A. M.2006. The Open University planetary impact facility: A compact two-stage light gas gun for all impact angles. International Journal of Impact Engineering33:410418.
  • Moritoh T., Kawai N., Nakamura K. G., and Kondo K.-I. 2001. Projectile acceleration aiming at velocities above 9 km/s by a compact gas gun. In Shock compression of condensed matter, edited by Furnish M. D., Thadhani N. N., and Horie Y. New York: American Institute of Physics. pp. 12041207.
  • Piekutowski A. J. and Poormon K. L.2006. Development of a three-stage, light-gas gun at the University of Dayton Research Institute. International Journal of Impact Engineering33:615624.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F. 2013. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones. Meteoritics & Planetary Science48, doi: 10.1111/maps.12016.
  • Schäfer F., Thoma K., Behner T., Kenkmann T., Wünnemann K., and MEMIN-Team. 2006. Impact tests on dry and wet sandstone. Proceedings, 1st International Conference on Impact Cratering in the Solar System, ESA Special Publication #612. pp. 131136.
  • Schneider E. and Schäfer F.2001. Hypervelocity impact research—Acceleration technology and applications. Advances in Space Research28:14171424.
  • Schneider E., Stilp A., and Kagerbauer G.1995. Meteoroid/debris simulation experiments on Mir viewport samples. International Journal of Impact Engineering17:731737.
  • Schultz P. H., Eberhardy C. A., Ernst C. M., A’Hearn M. F., Sunshine J. M., and Lisse C. M.2007. The Deep Impact oblique impact cratering experiment. Icarus190:295333.
  • Seigel A. E. 1965. The theory of high speed guns. Neutilly-sur-Seine, France: Advisory Group for Aerospace Research and Development. 312 p.
  • Smrekar S., Cintala M. J., and Hörz F.1986. Small-scale impacts into rock: An evaluation of the effects of target temperature on experimental results. Geophysical Research Letters13:745748.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Deutsch A., Hoerth T., Schäfer F., Kenkmann T., and Thoma K. 2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.