SEARCH

SEARCH BY CITATION

References

  • Ahrens T. J. and Gregson V. G. J.1964. Shock compression of crustal rocks: Data for quartz, calcite, and plagioclase rocks. Journal of Geophysical Research69:48394874.
  • Amsden A. A., Ruppel H. M., and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Los Alamos, New Mexico: Los Alamos National Laboratory Report LA-8095. 101 p.
  • Anderson C. E., Jr. 1987. An overview of theory of hydrocodes. International Journal of Impact Engineering5:3359.
  • Borg J. P. and Chhabildas L. C. 2011. Three-dimensional dynamic loading simulations of sand. In Proceedings of 11th Hypervelocity Impact Symposium, edited by Schäfer F., Hiermaier S. Schriftenreihe Forschungsergebnisse aus der Kurzzeitdynamik, vol. 20. Freiburg: Fraunhofer EMI. pp. 111123.
  • Britt D. T., Yeomans D., Housen K., and Consolmagno G. 2002. Asteroid density, porosity, and structure. In Asteroids III, edited by Bottke W., Cellino A., Paolicchi P., and Binzel R. P. Tuscon, Arizona: The University of Arizona Press. pp. 485500.
  • Buhl E., Poelchau M. H., Dresen G., and Kenkmann T. 2013. Deformation of dry and wet sandstone targets during hyper-velocity impact experiments, as revealed from the MEMIN program. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01431.x.
  • Carroll M. M. and Holt A. C.1972. Static and dynamic pore-collapse relations for ductile porous materials. Journal of Applied Geophysical Research43:16261636.
  • Collins G. S., Melosh H. J., and Ivanov B. A.2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science39:217231.
  • Collins G., Melosh H. J., Wilson C. R., and Wünnemann K. 2011. Numerical simulations of crater formation with dilatancy (abstract # P34A-07). AGU Fall Meeting. CD-ROM.
  • Crawford D. A., Barnouin-Jha O. S., and Cintala M. J. 2003. Mesoscale computational investigation of shocked heterogeneous materials with application to large impact craters (abstract #4119). Third International Conference on Large Meteorite Impacts, Nördlingen, Germany. CD-ROM.
  • Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: the MEMIN impact parameter study. Meteoritics & Planetary Science48, doi: 10.1111/maps.12024.
  • Ebert M., Hecht L., Deutsch A., and Kenkmann T. 2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x.
  • Elbeshausen D. and Wünnemann K. 2011. iSALE-3D: A three-dimensional, multi-material, multi-rheology hydrocode and its applications to large-scale geodynamic processes. In Proceedings of 11th Hypervelocity Impact Symposium, edited by Schäfer F. and Hiermaier S. Schriftenreihe Forschungsergebnisse aus der Kurzzeitdynamik, vol. 20, Freiburg: Fraunhofer EMI. pp. 287301.
  • Elbeshausen D., Wünnemann K., and Collins G. S.2009. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus204:716731.
  • Goldin T. J., Wünnemann K., Melosh H. J., and Collins G. S.2006. Hydrocode modeling of the Sierra Madera impact structure. Meteoritics & Planetary Science41:19471958.
  • Grieve R. A. F., Langenhorst F., and Stöffler D.1996. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics & Planetary Science31:635.
  • Güldemeister N., Wünnemann K., Buhl E., Kenkmann T., Durr N., and Hiermaier S. 2013. Numerical modeling of porosity alteration at the sub-surface of impact in sandstone (abstract #1851). 43th Lunar and Planetary Science Conference. CD-ROM.
  • Hermann W.1969. Constitutive equation of state for the dynamic compaction of ductile porous materials. Journal of Applied Geophysics40:24902499.
  • Holsapple K. A., Giblin I., Housen K. R., Nakamura A. M., and Ryan E. 2002. Asteroid impacts: Laboratory experiments and scaling laws. In Asteroids III, edited by Bottke W., Cellino A., Paolicchi P., and Binzel R. P. Tuscon, Arizona: The University of Arizona Press. pp. 443462.
  • Housen K. R. and Holsapple K. A.2003. Impact cratering on porous asteroids. Icarus163:102119.
  • Ivanov B. A. 2005. Shock melting of permafrost on Mars: Water ice multiphase equation of state for numerical modeling and its testing (abstract #1232). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Ivanov B. A., de Niem D., and Neukum G.1997. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering17:357386.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Kerley G. I. 1992. CTH equation of state package: Porosity and reactive burn models. Albuquerque, New Mexico: Sandia National Lab Report SAND92-0553.
  • Kieffer S. W.1971. Shock metamorphism of the Coconino sandstone at Meteor crater, Arizona. Journal of Geophysical Research76:54495473.
  • Kieffer S. W., Phakey P. P., and Christie J. M.1976. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contributions to Mineralogy and Petrology59:4193.
  • Kowitz A., Schmitt R. T., Reimold W. U., and Hornemann U. 2013. First MEMIN shock recovery experiments in dry, porous sandstone at low shock pressure (5–12.5 GPa). Meteoritics & Planetary Science48, doi: 10.1111/maps.12030.
  • Langenhorst F. and Deutsch A.2012. Shock metamorphism of minerals. Elements8:3163.
  • Langenhorst F and Hornemann U. 2005. Shock experiments on minerals: Basic physics and techniques. Mineral behaviour at extreme conditions. EMU Notes in Mineralogy, vol. 7, edited by Miletich R. Budapest: Eötvös University Press. pp. 357387.
  • Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216224.
  • Melosh H. J.2007. Hydrocode equation of state for SiO2. Meteoritics & Planetary Science42:20352182.
  • Moser D., Poelchau M. H., Stark F., and Gross C. 2013. Application of non-destructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments. Meteoritics & Planetary Science48. doi: 10.1111/maps.12000.
  • O’Keefe J. D., Stewart S. T., Lainhart M. E., and Ahrens T. J.2001. Damage and rock-volatile mixture effects on impact crater formation. International Journal of Impact Engineering26:543553.
  • Pierazzo E., Artemieva N. A., and Ivanov B. A. 2005. Starting conditions for hydrothermal systems underneath martian craters: Hydrocode modeling. In Large meteorite impacts III, edited by Kenkmann T., Hörz F., and Deutsch A. Geological Society of America Special Paper 384. Boulder, Colorado: Geological Society of America. pp. 443457.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F. 2013. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones. Meteoritics & Planetary Science48, doi: 10.1111/maps.12016.
  • Richardson J. E., Melsoh H. J., Lisse C. M., and Carcich B.2007. A ballistic analysis of the Deep Impact ejecta plume: Determining comet Tempel 1’s gravity, mass, and density. Icarus190:357390.
  • Riedel W., Wicklein M., and Thoma K. 2008. Shock properties of conventional and high strength concrete, experimental and mesomechanical analysis. International Journal of Impact Engineering35: 155171. doi: 10.1016/j.ijimpeng.2007.02.001
  • Schade S. and Wünnemann K. 2007. Numerical modeling of pore space collapse due to shock wave compression (abstract #1338). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Schäfer F., Thoma K., Behner T., Nau S., Kenkmann T., Wünnemann K., and the MEMIN-Team. 2006. Impact tests on dry and wet sandstone. Proceedings, 1st International Conference on Impact Cratering in the Solar System, ESA Special Publication #612.
  • Shipman F. H., Gregson V. G., and Jones A. H. 1971. A shock wave study of Coconino sandstone. NASA Contractor Report CR-1842. 46 pp.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Hoerth T., Deutsch A., Kenkmann T., and Thoma K. 2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
  • Stöffler D. 1982. Density of minerals and rocks under shock compression. In Landolt-Börnstein—Numerical data and functional relationships in science and technology. New Series, group 5, vol. 1. edited by Hellwege K. H. Berlin: Springer. pp. 120183.
  • Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics & Planetary Science29:155181.
  • Thompson S. L., and Lauson H. S. 1972. Improvements in the Chart D radiation-hydrodynamic code 3: Revised analytic equations of state. Report SC-RR-71 0714. Albuquerque, New Mexico: Sandia National Laboratory. 119 p.
  • Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514527.
  • Wünnemann K., Collins G. S., and Osinski G. R.2008. Numerical modelling of impact melt production in porous rocks. Earth and Planetary Science Letters269:530539.
  • Wünnemann K., Nowka D., Collins G. S., Elbeshausen D., and Bierhaus M.2011. Scaling of impact crater formation on planetary surfaces: Insights from numerical modeling. In Proceedings of 11th Hypervelocity Impact Symposium, edited by Schäfer F. and Hiermaier S. Schriftenreihe Forschungsergebnisse aus der Kurzzeitdynamik, vol. 20. Freiburg: Fraunhofer EMI. pp. 116.
  • Zel’dovich Y. B., and Raizer Y. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena. Mineola, New York: Dover Publications. 944 p.