SEARCH

SEARCH BY CITATION

References

  • Ackermann H. D., Godson R. H. and Watkins J. S.1975. A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona. Journal of Geophysical Research80:765775.
  • Ahrens T. J. and Rubin A. M.1993. Impact-induced tensional failure in rock. Journal of Geophysical Research98:11851203.
  • Ai H.-A. and Ahrens T. J.2004. Dynamic tensile strength of terrestrial rocks and application to impact cratering. Meteoritics & Planetary Science39:233246.
  • Anderson J. L. B., Schultz P. H., and Heineck J. T.2004. Experimental ejection angles for oblique impacts: Implications for the subsurface flow-field. Meteoritics & Planetary Science39:303320.
  • Arakawa M. and Yasui M.2011. Impact crater formed on sintered snow surface simulating porous icy bodies. Icarus216:19.
  • Aydin A., Borja R., and Eichhubl P.2006. Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology28:8398.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A.2007. Laboratory impacts into dry and wet sandstone with and without an overlying water layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science42:19051914.
  • Barnouin-Jha O. S., Yamamoto S., Toriumi T., Sugita S., and Matsui T.2007. Non-intrusive measurements of crater growth. Icarus188:506521.
  • Birkhoff G., MacDougall D. P., Pugh E. M., and Taylor G.1948. Explosives with lined cavities. Journal of Applied Physics19:563582.
  • Braslau D.1970. Partitioning of energy in hypervelocity impact against loose sand targets. Journal of Geophysical Research75:39873999.
  • Burchell M. J. and Whitehorn L.2003. Oblique incidence hypervelocity impacts on rock. Monthly Notices of the Royal Astronomical Society341:192198.
  • Butkovich T. R.1971. Influence of water in rocks on effects of underground nuclear explosion. Journal of Geophysical Research76:19932011.
  • Cintala M. J., Berthoud L., and Hörz F.1999. Ejection-velocity distributions from impacts into coarse-grained sand. Meteoritics & Planetary Science34:605623.
  • Collins G. S., Melosh H. J., and Wünnemann K.2011. Improvements to the ε-α porous compaction model for simulating impacts into high-porosity solar system objects. Hypervelocity impact selected papers from the 2010 Symposium. International Journal of Impact Engineering38:434439.
  • Colombo P., Arcaro A., Francesconi A., Pavarin D., Rondini D., and Debei S.2003. Effect of hypervelocity impact on microcellular ceramic foams from a preceramic polymer. Advanced Engineering Materials5:802805.
  • DiGiovanni A. A., Fredrich J. T., Holcomb D. J., and Olsson W. A.2007. Microscale damage evolution in compacting sandstone. Geological Society of London, Special Publications289:89103.
  • Dufresne A., Poelchau M. H., Kenkmann T., Deutsch A., Hoerth T., Schäfer F., and Thoma K. 2013. Crater morphology in sandstone targets: the MEMIN impact parameter study. Meteoritics & Planetary Science48, doi: 10.1111/maps.12024.
  • Earth Impact Database. 2012. http://www.unb.ca/passc/ImpactDatabase. Accessed January 26, 2012.
  • Ebert M., Hecht L., Deutsch A., and Kenkmann T. 2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.1429.x.
  • Evans A. G., Gulden M. E., and Rosenblatt M.1978. Impact damage in brittle materials in the elastic-plastic response régime. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences361:343365.
  • Field J. E.1971. Brittle fracture: Its study and application. Contemporary Physics12:131.
  • Folco L., Di Martino M., El Barkooky A., D’Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M.2011. Kamil crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology39:179182.
  • Fossen H., Schultz R. A., Shipton Z. K., and Mair K.2007. Deformation bands in sandstone: A review. Journal of the Geological Society164:755769.
  • Frank F. C. and Lawn B. R.1967. On the theory of Hertzian fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences299:291306.
  • Gault D. E. and Greeley R.1978. Exploratory experiments of impact craters formed in viscous-liquid targets: Analogs for Martian rampart craters?Icarus34:486495.
  • Gault D. E., and Heitowit E. D. 1963. The partition of energy for hypervelocity impact craters formed in rock. Proceedings, 6th Hypervelocity Impact Symposium. pp. 419456.
  • Gault D. E., Quaide W. I., and Oberbeck V. R. 1968. Impact cratering mechanics and structures. In Shock metamorphism of natural materials, edited by French B. M. and Short N. M. Baltimore: Mono Book Corps. pp. 87100.
  • Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2013. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01430.x.
  • Hartmann W. K.1985. Impact experiments. 1. Ejecta velocity distributions and related results from regolith targets. Icarus63:6998.
  • Hermalyn B. and Schultz P. H.2011. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth. Icarus216:269279.
  • Hiltl M., Swift R. P., Hagelberg C. R., Carney T. C., and William J. N. 1999. Shock-recovery experiments of sandstone under dry and water-saturated conditions. In Shock compression of condensed matter, edited by Furnish M. D., Chhabildas L. C., and Hixson R. S. Melville, New York: American Institute of Physics. pp. 12511254.
  • Hoerth T., Schäfer F., Thoma K., Kenkmann T., Poelchau M. H., Lexow B and Deutsch A. 2013. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth. Meteoritics & Planetary Science48, doi: 10.1111/maps.12044.
  • Holsapple K. A. 1980. The equivalent depth of burst for impact cratering. Proceedings, 11th Lunar and Planetary Science Conference. pp. 23792401.
  • Hörz F.1969. Structural and mineralogical evaluation of an experimentally produced impact crater in granite. Contributions to Mineralogy and Petrology21:365377.
  • Hörz F. and Cintala M. J.1997. Impact experiments related to the evolution of planetary regoliths. Meteoritics & Planetary Science32:179209.
  • Housen K. R. and Holsapple K. A.2003. Impact cratering on porous asteroids. Icarus163:102119.
  • Housen K. R., Holsapple K. A., and Voss M. E.1999. Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature402:155157.
  • Issen K. A. and Rudnicki J. W.2001. Theory of compaction bands in porous rock. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy26:95100.
  • Kenkmann T.2003. Dike formation, cataclastic flow, and rock fluidization during impact cratering: An example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters214:4358.
  • Kenkmann T., Jahn A., Scherler D., and Ivanov B. A. 2005. Structure and formation of a central uplift: A case study at the Upheaval Dome. In Large meteorite impacts III, edited by Kenkmann T., Hörz F., and Deutsch A. Washington, D.C.: Geological Society of America. pp. 85115.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Kenkmann T., Thoma K., Deutsch A., and Poelchau M. H. 2013. Preface: Introduction to the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12035.
  • Key W. R. O. and Schultz R. A.2011. Fault formation in porous sedimentary rocks at high strain rates: First results from the Upheaval Dome impact structure, Utah, USA. Geological Society of America Bulletin123:11611170.
  • Kieffer S. W.1971. Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. Journal of Geophysical Research76:54495473.
  • Kieffer S. W. and Simonds C. H.1980. The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics and Space Physics18:143.
  • Lange M. A. and Ahrens T. J.1987. Impact experiments in low-temperature ice. Icarus69:506518.
  • Lange M. A., Ahrens T. J., and Boslough M. B.1984. Impact cratering and spall failure of gabbro. Icarus58:383395.
  • Lohse D., Bergmann R., Mikkelsen R., Zeilstra C., van der Meer D., Versluis M., van der Weele K., van der Hoef M., and Kuipers H.2004. Impact on soft sand: Void collapse and jet formation. Physical Review Letters93:198003-1198003-4.
  • Lomov I., Hiltl M., Vorobiev O. Y., and Glenn L. A.2001. Dynamic behavior of berea sandstone for dry and water-saturated conditions. International Journal of Impact Engineering26:465474.
  • Love S. G., Hörz F., and Brownlee D. E.1993. Target porosity effects in impact cratering and collisional disruption. Icarus105:216224.
  • Maurer W. C. and Rinehart J. S.1960. Impact crater formation in rock. Journal of Applied Physics31:12471252.
  • Maxwell D. E. 1977. Simple Z model of cratering, ejection, and overturned flap. In Impact and explosion cratering, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon Press. pp. 10031008.
  • Melosh H. J.1984. Impact ejection, spallation, and the origin of meteorites. Icarus59:234260.
  • Melosh H. J. 1989. Impact cratering: A geologic process. New York: Oxford University Press. 245 p.
  • Menéndez B., Zhu W., and Wong T.-F.1996. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. Journal of Structural Geology18:116.
  • Michikami T., Moriguchi K., Hasegawa S., and Fujiwara A.2007. Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planetary and Space Science55:7088.
  • Moore H. J., Gault D. E., and Lugn R. V.1963. Experimental impact craters in basalt. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers229:258262.
  • Moser D., Poelchau M. H., Stark F., and Grosse C. 2013. Application of non-destructive testing methods to study the damage zone underneath impact craters of laboratory experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12000.
  • Okubo C. H. and Schultz R.2007. Compactional deformation bands in Wingate Sandstone; additional evidence of an impact origin for Upheaval Dome, Utah. Earth and Planetary Science Letters256:169181.
  • Olsson W. A., Holcomb D. J., and Rudnicki J. W. 2002. Compaction localization in porous sandstone: Implications for reservoir mechanics. Oil & Gas Science and Technology—Revue d’IFP Energies Nouvelles57:591599.
  • Onose N., Okudaira K., and Hasegawa S. 2011. Energy partition into compaction of a target in impact cratering on a gypsum target. (abstract #1758). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Osinski G. R., Lee P., Spray J. G., Parnell J., Lim D. S. S., Bunch T. E., Cockell C. S., and Glass B.2005. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science40:17591776.
  • Poelchau M. H. and Kenkmann T.2008. Asymmetric signatures in simple craters as an indicator for an oblique impact direction. Meteoritics & Planetary Science43:20592072.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F. 2013. The MEMIN research unit: Overview of experiments and scaling results in porous sandstones. Meteoritics & Planetary Science48, doi: 10.1111/maps.12016.
  • Pohl J., Stoeffler D., Gall H., and Ernstson K. 1977. The Ries impact crater. InImpact and explosion cratering: Planetary and terrestrial implications, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon Press. pp. 343404.
  • Polanskey C. A., and Ahrens T. J.1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus87:140155.
  • Riney T. D., Garg S. K., Kirsch J. W., Morland L. W., and Hastings C. R. 1970. Stress wave effects in inhomogeneous and porous earth materials. Systems, Science and Software Report 35R-267.
  • Schäfer F., Thoma K., Behner T., Nau S., Kenkmann T., and Wünnemann K and MEMIN Team. 2006. Impact experiments on dry and wet sandstone. Proceedings, 1st International Conference on Impact Cratering in the Solar System, ESA Special Publication #612, Noordwijk.
  • Schneider E. and Schäfer F.2001. Hypervelocity impact research—Acceleration technology and applications. Advances in Space Research28:14171424.
  • Schultz P. H., Hermalyn B., Colaprete A., Ennico K., Shirley M., and Marshall W. S.2010. The LCROSS cratering experiment. Science330:468472.
  • Shibuya T. and Nakahara I.1968. The semi-infinite body subjected to a concentrated impact load on the surface. Bulletin of JSME11:983992.
  • Shoemaker E. M. 1977. Why study impact craters? In Impact and explosion cratering: Planetary and terrestrial implications, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon Press. pp. 110.
  • Shoemaker E. M., Gault D. E., Moore H. J., and Lugn R. V.1963. Hypervelocity impact of steel into Coconino Sandstone. American Journal of Science261:668682.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Deutsch A., Hoerth T., Schäfer F., Kenkmann T., and Thoma K. 2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone: Results from the MEMIN research unit. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
  • Stanchits S., Fortin J., Gueguen Y., and Dresen G.2009. Initiation and propagation of compaction bands in dry and wet bentheim sandstone. Pure and Applied Geophysics166:843868.
  • Stöffler D., Gault D. E., Wedekind J., and Polkowski G.1975. Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. Journal of Geophysical Research80:40624077.
  • Wilshaw T. R.1971. The Hertzian fracture test. Journal of Physics D: Applied Physics4:15671581.
  • Wong T.-F. and Baud P.1999. Mechanical compaction of porous sandstone. Oil & Gas Science and Technology54:715727.
  • Wünnemann K., Collins G. S, and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514527.
  • Xia K. and Ahrens T. J.2001. Impact induced damage beneath craters. Geophysical Research Letters28:35253527.
  • Yamamoto S. and Nakamura A. M.1997. Velocity measurements of impact ejecta from regolith targets. Icarus128:160170.
  • Zang A., Wagner C. F., and Dresen G.1996. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. Journal of Geophysical Research101:1750717521.
  • Zhu W. and Wong T.-F.1997. Shear-enhanced compaction in sandstone under nominally dry and water-saturated conditions. International Journal of Rock Mechanics and Mining Sciences34:364.e1364.e12.