SEARCH

SEARCH BY CITATION

References

  • Ahrens T. J. and Gregson V. G.1964. Shock compression of crustal rocks: Data for quartz, calcite, and plagioclase rocks. Journal of Geophysical Research69:48394874.
  • Artemieva N. and Pierazzo E.2011. The Canyon Diablo impact event: 2. Projectile fate and target melting upon impact. Meteoritics & Planetary Science46:805829.
  • Attrep M., Orth C. J., Quintana L. R., Shoemaker C. S., Shoemaker E. M., and Taylor S. R.1991. Chemical fractionation of siderophile elements in impactites from Australian meteorite craters (abstract). 22nd Lunar and Planetary Science Conference. p. 39.
  • Berry S. A., Chen F.-J., Wilder M. C., and Reda D. C. 2007. Boundary layer transition experiments in support of the hypersonics program. AIAA Paper 2007-4266. Reston, Virginia: The American Institute of Aeronautics and Astronautics.
  • Brett R.1967. Metallic spherules in impactite and tektite glasses. The American Mineralogist52:721733.
  • Buchwald V. F. 1975. Handbook of iron meteorites, their history, distribution, composition, and structure. Berkeley: University of California Press.
  • Bunch T. E. and Cassidy W. A. 1968. Impact-induced deformation in the Campo del Cielo meteorite. In Shock metamorphism of natural materials, edited by French B. M. and Short N. M. Baltimore: Mono Book Corp. pp. 601612.
  • Bunch T. E. and Cassidy W. A.1972. Petrographic and electron microprobe study of the Monturaqui impactite. Contributions to Mineralogy and Petrology36:95112.
  • Cintala M. J. and Hörz F.2008. Experimental impacts into chondritic targets, part I: Disruption of an L6 chondrite by multiple impacts. Meteoritics & Planetary Science43:771803.
  • D’Orazio M., Folco L., Zeoli A., and Cordier C.2011. Gebel Kamil: The iron meteorite that formed the Kamil crater (Egypt). Meteoritics & Planetary Science46:11791196.
  • Evans N. J., Shahinpoor M., and Ahrens T. J.1994. Hypervelocity impact: Ejecta velocity, angle, and composition. Geological Society of America293:93101.
  • French B. M. 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954. Houston, Texas: Lunar and Planetary Institute 120 p.
  • Gault D.1973. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks. Earth, Moon, and Planets6:3244.
  • Gibbons R. V., Hörz F., Thompson T. D., and Brownlee D. E. 1976. Metal spherules in Wabar, Monturaqui, and Henbury impactites. Proceedings, 7th Lunar Science Conference. pp. 863880.
  • Grey I. D. S., Burchell M. J., and Shrine N. R. G.2002. Scaling of hypervelocity impact craters in ice with impact angle. Journal of Geophysical Research107:50765084.
  • Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2011. Propagation of impact-induced shock waves in heterogeneous rocks using mesoscale modeling (abstract #1104). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Güldemeister N., Durr N., Wünnemann K., and Hiermaier S. 2013. Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteoritics & Planetary Science48, doi: 10.1111/j.1945-5100.2012.01430.x.
  • Hillgren V. J., Drake M. J., and Rubie D. C.1994. High-pressure and high-temperature experiments on core-mantle segregation in the accreting earth. Science264:14421445.
  • Hillgren V. J., Drake M. J., and Rubie D. C.1996. High pressure and high temperature metal-silicate partitioning of siderophile elements: The importance of silicate liquid composition. Geochimica et Cosmochimica Acta60:22572263.
  • Hörz F.1969. Structural and mineralogical evaluation of an experimentally produced impact crater in granite. Contributions to Mineralogy and Petrology21:365377.
  • Hörz F.2012. Cratering and penetration experiments in aluminum and teflon: Implications for space-exposed surfaces. Meteoritics & Planetary Science47:763797.
  • Hörz F., Fechtig H., Janicke J., Schneider E., and Kuczera H.1983. The chemistry of projectile residue in experimental microcraters (abstract). 14th Lunar and Planetary Science Conference. p. 327.
  • Hörz F., Blanchard D. P., See T. H., and Murali A. V. 1989. Heterogeneous dissemination of projectile materials in the impact melts from Wabar crater, Saudi Arabia. Proceedings, Lunar and Planetary Science Conference. pp. 697709.
  • Hörz F., Mittlefehldt D. W., See T. H., and Galindo C.2002. Petrographic studies of the impact melts from Meteor Crater, Arizona, USA. Meteoritics & Planetary Science37:501531.
  • Jammes C., Stöffler D., Bischoff A., Reimold W. U., and Gault D. E. 1983. Reduction of SiO2 to Si and metallurgical transformations in Al by hypervelocity impact of al-projectiles into quartz sand (abstract). 14th Lunar and Planetary Science Conference. p. 347.
  • Jochum K. P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D. E., Stracke A., Birbaum K., Frick D. A., Günther D., and Enzweiler J.2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research35:397429.
  • Kearsley A., Graham G., McDonnell T., Bland P., Hough R., and Helps P.2004. Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?Meteoritics & Planetary Science39:247265.
  • Kelly W. R., Holdsworth E., and Moore C. B.1974. The chemical composition of metallic spheroids and metallic particles within impactite from Barringer Meteorite Crater, Arizona. Geochimica et Cosmochimica Acta38:533534.
  • Kenkmann T., Patzschke M., Thoma K., Schäfer F., Deutsch A., and Hecht L. 2007. Melting and vaporization of a steel projectile in meso-scale hypervelocity cratering experiments (abstract #1831). 38th Lunar and Planetary Science Conference. CD-ROM.
  • Kenkmann T., Artemieva N. A., Wünnemann K., Poelchau M. H., Elbeshausen D., and Nuñéz Del Prado H.2009. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science44:9851000.
  • Kenkmann T., Wünnemann K., Deutsch A., Poelchau M. H., Schäfer F., and Thoma K.2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science46:890902.
  • Kenkmann T., Trullenque G., Deutsch A., Hecht L., Ebert M., Salge T., Thoma K., and Schäfer F.2013. Deformation and melting of steel projectiles in hypervelocity cratering experiments. Meteoritics & Planetary Science48, doi: 10.1111/maps.12018.
  • Kiefer S. W. 1971. Shock metamorphism of the Coconino Sandstone at Meteor Crater. Ph.D. thesis. California Institute for Technology, Pasadena, California, USA.
  • Krinov E. L. and Fesenkov V. G.1959. The Sikhote-Alin iron meteorite shower. In The main conditions of the fall of a meteoritic shower, edited by Krinov E. L. Moscow: Russian Academy of Sciences. pp. 99156.
  • Langenhorst F.2002. Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bulletin of the Czech Geological Survey77:265282.
  • Langenhorst F. and Deutsch A.1994. Shock experiments on pre-heated α- and β-quartz: I. Optical and density data. Earth and Planetary Science Letters125:407420.
  • Lexow B., Wickert M., Thoma K., Schäfer F., Poelchau M. H., and Kenkmann T.2013. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research. Meteoritics & Planetary Science48. doi: 10.1111/j.1945-5100.2012.01427.x.
  • Melosh H. J. 1989. Impact cratering: A geological process. New York: Oxford University Press Inc. pp. 5458.
  • Mittlefehldt D. W., See T. H., and Hörz F.1992. Dissemination and fractionation of projectile materials in the impact melts from Wabar crater, Saudi Arabia. Meteoritics27:361370.
  • Mittlefehldt D. W., Hörz F., See T. H., Scott E. R. D., and Mertzman S. A.2005. Geochemistry of target rocks, impact-melt particles, and metallic spherules from Meteor Crater, Arizona: Empirical evidence on the impact process. Geological Society of America Special Papers384:367390.
  • Moore H. J., Gault D. E., and Lugn R. V.1963. Experimental impact craters in basalt. Transactions—Society of Mining Engineers229:258262.
  • Mysen B. O. and Richet P. 2005. Silicate glasses and melts: Properties and structure. Amsterdam, the Netherlands: Elsevier.
  • Ohtani E., Yurimoto H., and Seto S.1997. Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: Implications for core formation of the Earth. Physics of the Earth and Planetary Interiors100:97114.
  • Oshtrakh M. I., Larionov M. Y., Grokhovsky V. I., and Semionkin V. A.2011. An analysis of Fe and Ni distribution in M1, M2 and M3 sites of iron-nickel phosphides extracted from Sikhote-Alin meteorite using Mössbauer spectroscopy with a high velocity resolution. Journal of Molecular Structure993:3842.
  • Palme H., Grieve R. A. F., and Wolf R.1981. Identification of the projectile at the Brent crater, and further considerations of projectile types at terrestrial craters. Geochimica et Cosmochimica Acta45:24172424.
  • Park F. R., Bunch T. E., and Massalski T. B.1966. A study of the silicate inclusions and other phases in the Campo del Cielo meteorite. Geochimica et Cosmochimica Acta30:399400.
  • Poelchau M. H., Deutsch A., Kenkmann T., Hoerth T., Schäfer F., and Thoma K. and the MEMIN Team. 2011. Experimental impact cratering into sandstone: A MEMIN progress report (abstract #1824). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Poelchau M. H., Kenkmann T., Thoma K., Hoerth T., Dufresne A., and Schäfer F.2013. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones. 48, doi: 10.1111/maps.12016.
  • Polanskey C. A. and Ahrens T. J.1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus87:140155.
  • Reiser F., Dufresne A., Poelchau M. H., Deutsch A., and Kenkmann T. 2011. Catching as much information as possible—An efficient and easy-to-build ejecta catcher for high-velocity impact experiments (abstract #1733). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Remo J. L.1994. Classifying and modeling NEO material properties and interactions. In Hazards due to comets and asteroids, edited by Gehrels T. Tucson, Arizona: University of Arizona Press. pp. 551596.
  • Righter K., Drake M. J., and Yaxley G.1997. Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800 °C: The effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Physics of the Earth and Planetary Interiors100:115134.
  • Rowan L. R. and Hörz F. 1995. Deciphering projectile compositions of impact craters via shock recovery experiments on simple metal-silicate systems. Proceedings, 26th Lunar and Planetary Science Conference. pp. 11931194.
  • Schmitt W., Palme H., and Wänke H.1989. Experimental determination of metal/silicate partition coefficients for P, Co, Ni, Cu, Ga, Ge, Mo, and W and some implications for the early evolution of the Earth. Geochimica et Cosmochimica Acta53:173185.
  • Schultz P. H. 2003. Transient crater growth in low density targets (abstract #2007). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Seo M. and Sato N.1983. Selective oxidation of Fe-30Ni alloy in a low-temperature range (433–473 K). Oxidation of Metals19:151163.
  • Shoemaker E. M., Gault D. E., Moore H. J., and Lugn R. V.1963. Hypervelocity impact of steel into Coconino sandstone. American Journal of Science261:668682.
  • Sommer F., Reiser F., Dufresne A., Poelchau M. H., Hoerth T., Deutsch A., Kenkmann T., and Thoma K. 2013. Ejection behavior characteristics of experimental impacts into dry and wet sandstone. Meteoritics & Planetary Science48, doi: 10.1111/maps.12017.
  • Stöffler D. and Langenhorst F.1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics29:155181.
  • Tagle R. and Hecht L.2006. Geochemical identification of projectiles in impact rocks. Meteoritics & Planetary Science41:17211735.
  • Walker D., Norby L., and Jones J. H.1993. Superheating effects on metal-silicate partitioning of siderophile elements. Science262:18581861.
  • Weaver H., A’Hearn M., Arpigny C., Boice D., Feldman P., Larson S., Lamy P., Levy D., Marsden B., Meech K., Noll K. S., Scotti J. V., Sekanina Z., Shoemaker C. S., Shoemaker E. M., Smith T. E., Stern S. A., Storrs A. D., Trauger J. T., Yeomans D. K., and Zellner B.1995. The Hubble Space Telescope (HST) observing campaign on comet Shoemaker-Levy 9. Science267:12821288.
  • White W. 2011. Geochemistry—Chapter 7. Baltimore, Maryland: Johns Hopkins University Press. http://www.geo.cornell.edu/geology/classes/geo455/Chapters.html
  • Wozniakiewicz P. J., Ishii H. A., Kearsley A. T., Burchell M. J., Bland P. A., Bradley J. P., Dai Z., Teslich N., Collins G. S., Cole M. J., and Russell S. S.2011. Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy. Meteoritics & Planetary Science46:10071024.
  • Wünnemann K., Collins G. S., and Melosh H. J.2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus180:514527.