SEARCH

SEARCH BY CITATION

REFERENCES CITED

  • Akiner, M.M. and S.S. Caglar. 2006. The status and seasonal changes of organophosphate and pyrethroid resistance in Turkish populations of the house fly, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 31: 5864.
  • Aldridge, W.N. 1950. Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E605) and analogues. Biochem J. 46: 451460.
  • Bender, W., P. Spierer, and D.S. Hogness. 1983. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and bithorax complex in D. melanogaster. J. Mol. Biol. 168: 1733.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248254.
  • Chen, Z., R. Newcomb, E. Forbes, J. McKenzie, and P. Batterham. 2001. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol. 31: 805816.
  • Chevillon, C., M. Raymond, T. Guillemaud, T. Lenormand, and N. Pasteur. 1999. Population genetics of insecticide resistance in the mosquito Culex pipiens. Biol. J. Linn. Soc. 68: 147157.
  • Crane, M., W. Sildanchandra, R. Kheir, and A. Callaghan. 2002. Relationship between biomarker activity and developmental endpoints in Chironomus riparius Meigen exposed to an organophosphate insecticide. Ecotox. Environ. Safe. 53: 361369.
  • Delen, N., E. Durmusoglu, A. Guncan, N. Gungor, C. Turgut, and A. Burcak. 2005. Problems of the pesticide application, residue, and decrease of susceptibility in organisms in Turkey. Turkey Agricultural Engineeringship VI. Technical Congress, Ankara - Turkey , pp. 629648.
  • Ellman G.L, D.K. Courtney, V. Andres, and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 8895.
  • ffrench-Constant, R.H., T.A. Rocheleau, J.C. Steichen, and A.E. Chalmers. 1993. A Point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363: 449451.
  • Field, L.M., A.L. Devonshire, and B.G. Forde. 1988. Molecular evidence that insecticide resistance in peach-potato aphid (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251: 309312.
  • Fournier, D., J.M. Bride, M. Poirie, J.B. Berge, and F.W. Plapp. 1992a. Insect glutathione transferase. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J. Biol. Chem. 267: 18401845.
  • Fournier, D., J.M. Bride, F. Hoffman, and F. Karch. 1992b. Acetylcholinesterase: two types of modifications confer resistance to insecticides. J. Biol. Chem. 267: 1427014274.
  • Gacar, F., and V. Taşkın. 2009. Partial base sequence analysis of MdαE7 gene and ali-esterase enzyme activities in field collected populations of house fly (Musca domestica L.) from Mediterranean and Aegean Regions of Turkey. Pestic. Biochem. Physiol. 94: 8892.
  • Hsu, J.C, D.S. Haymer, W.J. Wu, and T.H. Feng. 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36: 396402.
  • Kakani, E. G., I.M. Ioannides, J.T. Margaritopoulos, N.A. Seraphides, J.A. Skouras, and K.D. Mathiopoulus. 2008. A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem. Mol. Biol. 38: 781787.
  • Kozaki, T., S.G. Brady, and J.G. Scott. 2009. Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pestic. Biochem. Physiol. 95: 611.
  • Kozaki, T., T. Shono, T. Tomita, and Y. Kono. 2001a. Fenitroxon insensitive acetylcholinesterases of the house fly, Musca domestica associated with point mutations. Insect Biochem. Mol. Biol. 31: 991997.
  • Kozaki, T., T. Shono, T. Tomita, and Y. Kono. 2001b. Polymorphism in the acetylcholinesterase gene of the house fly, Musca domestica L. (Diptera: Muscidae). Appl. Entomol. Zool. 36: 377380.
  • Kristensen, M., J. Huang, C. L. Qiao, and J. B. Jespersen. 2006. Variation of Musca domestica L. acetylcholinesterase in Danish house fly populations. Pest. Manag. Sci. 62: 738745.
  • Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5: 150163.
  • Kyu, T. Y. and J.L. Bishop. 1967. Penetration, excretion and metabolism of carbaryl in susceptible and resistant German cockroaches, J. Econ. Entomol 60: 13281332.
  • Leiniö, S. and K.K. Lehtonen. 2005. Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from the northern Baltic Sea. Comp. Biochem. Physiol. C 140: 408421.
  • Liming T., S. Mingan, Y. Jiangzhong, Z. Peijun, Z. Chuanxi, and T. Zhenhua. 2006. Resistance pattern and point mutations of insensitive acetylcholinesterase in a carbamate-resistant strain of house fly (Musca domestica). Pest. Biochem. Physiol. 86: 16.
  • Matowo, M. J., M. A Kulkarni, F.W. Mosha, R.M. Oxborough, J.A. Kitau, F. Tenu, and M. Rowland. 2010. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malaria J. 9: 193.
  • Menozzi, P., M.A. Shi, A. Lougarre, Z.H. Tang, and D. Fournier. 2004. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol. Biol. 4: 4.
  • Mouches, C., N. Pasteur, J.B. Berge, O. Hyrien, M. Raymond, B.R. Saint Vincent, M. Silvestri, and G.P. Georghiou. 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778780.
  • Mutero, A., M. Pralavorio, J.M. Bride, and D. Fournier. 1994. Resistance-associated point mutation in insecticide insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 91: 59225926.
  • Nabeshima, T. and T. Kozaki. 2003. An amino acid substitution on the second acetylcholinesterae in the pirimicarb-resistant strains of the pearch potao aphid, Myzus persicae. Biochem. Biophys. Res. Commun. 307: 1522.
  • Nabeshima, T., A. Mori, T. Kozaki, Y. Iwata, O. Hidoh, S. Harada, S. Kasai, D.W. Severson, Y. Kono, and T. Tomita. 2004. An amino acid substitu substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem. Biophys. Res. Commun. 313: 794801.
  • Qiao, Q.L. and M. Raymond. 1995. The same esterase B1 is amplified in insecticide resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity. 74: 339345.
  • Raymond M, Callaghan A, Fort P, Pasteur N. 1991. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 350: 151153.
  • Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 24962497.
  • Russell, R., C. Claudianos, P.M. Campbell, I. Horne, T.D. Sutherland, and J.G. Oakeshott. 2004. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pestic. Biochem. Physiol. 79: 8493.
  • Sussman, J. L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman. 1991. Atomic structure of acetylcholinesterase from Torpedo californica- a prototypic acetylcholine-binding protein. Science 253: 872879.
  • Taskin, V. and M. Kence. 2004. The genetic basis of malathion resistance in house fly (Musca domestica L.) strains from Turkey. Russian J. Genet. 40: 14751482.
  • Taskin V., B.G. Taskin, K. Kucukakyuz, and M. Kence. 2009. Potential use of variation in esterase, glutathione-S-transferase, and acetylcholinesterase activities in Musca domestica L. in biomonitoring. Fres. Environ. Bull. 18: 20792085.
  • Toda, S., S. Komazaki, R. Tomita, and Y. Kono. 2004. Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Mol. Biol. 13: 549553.
  • Vontas, J.G., Hejazi, N.J. Hawkes, N. Cosmidis, M. Loukas, and J. Hemingway. 2002. Resistance associated point mutations of organophosphate insensitive acethylcholinesterase in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11: 329336.
  • Walsh, S. B., T.A. Dolden, G.D. Moores, M. Kristensen, T. Lewis, A.L. Devonshire, and M.S. Williamson. 2001. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 359: 175181.
  • Weill, M., P. Fort, A. Berthomieu, M.P. Dubois, N. Pasteur, and M. Raymond. 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc. R. Soc. Lond. B Biol. Sci. 269: 20072016.
  • Weill, M., G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu, C. Berticat, N. Pasteur, A. Philips, P. Fort, and M. Raymond. 2003. Insecticide resistance in mosquito vectors. Nature 423: 136137.
  • Weill, M., C. Malcolm, F. Chandre, K. Mogensen, A. Berthomien, M. Marquine, and M. Raymond. 2004. The unique mutation in ace-1 giving high insecticide resistance is easily detected in mosquito vectors. Insect Mol. Biol. 13: 17.
  • Williamson, M.S., D. Martinez-Torres, C. A. Hick, and A. L. Devonshire. 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252: 5160.