SEARCH

SEARCH BY CITATION

References

  • Anderson, R. P.. 2003. Real vs artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuala. J. Biogeogr. 30: 591605.
  • Anderson, R. P., Peterson, A. T. and Gómez-Laverde, M.. 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98: 316.
  • Araújo, M. B. and Williams, P. H.. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331345.
  • Araújo, M. B. et al. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol. 10: 16181626.
  • Araújo, M. B. et al. 2005. Validation of species-climate impact models under climate change. Global Change Biol. 11: 15041513.
  • Austin, M. P.. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Modell. 157: 101118.
  • Austin, M. P. and Cunningham, R. B.. 1981. Observational analysis of environmental gradients. Proc. Ecol. Soc. Aust. 11: 109119.
  • Austin, M. P. et al. 1994. Determining species response functions to an environmental gradient by means of a beta-function. J. Veg. Sci. 5: 215228.
  • Austin, M. P. et al. 1995. Modelling of landscape patterns and processes using biological data. Subproject 5: simulated data case study. – In: Division of Wildlife and Ecology, CSIRO.
  • Bakkenes, M. et al. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol. 8: 390407.
  • Barry, S. C. and Elith, J. in press. Error and uncertainty in habitat models. – J. Appl. Ecol.
  • Bio, A. M. F. 2000. Does vegetation suit our models? Data and model assumptions and the assessment of species distribution in space. – Fac. of Geographical Sciences, Utrecht Univ., Netherlands Ph.D. thesis.
  • Bojórquez, L. I. et al. 1995. Identifying conservation priorities in México through GIS and modeling. Ecol. Appl. 5: 215231.
  • Boyce, M. S. et al. 2002. Evaluating resource selection functions. Ecol. Modell. 157: 281300.
  • Brotons, L. et al. 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27: 437448.
  • Brown, J. and Lomolino, M.. 1998. Biogeography. Sinauer.
  • Burgman, M., Lindenmayer, D. B. and Elith, J.. 2005. Managing landscapes for conservation under uncertainty. Ecology 86: 20072017.
  • Burnham, K. P. and Anderson, D. R.. 2002. Model selection and inference: a practical information – theoretic approach, 2nd ed. Springer.
  • Busby, J. R.. 1991. BIOCLIM – a bioclimate analysis and prediction system. – In: Margules, C. R. and Austin, M. P. (eds), Nature conservation: cost effective biological surveys and data analysis. CSIRO, pp. 6468.
  • Carpenter, G., Gillison, A. N. and Winter, J.. 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiv. Conserv. 2: 667680.
  • Cawsey, E. M., Austin, M. P. and Baker, B. L.. 2002. Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodiv. Conserv. 11: 22392274.
  • Cicero, C.. 2004. Barriers to sympatry between avian sibling species (Paridae: Beolophus) in tenuous secondary contact. Evolution 58: 15731587.
  • Cohen, J.. 1960. A coefficient of agreement for nominal scales. Educ. Psyschol. Meas. 20: 3746.
  • Elith, J. and Burgman, M. A.. 2002. Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. – In: Scott, J. M. et al (eds), Predicting species occurrences: issues of accuracy and scale. Island Press, pp. 303314.
  • Ferrier, S.. 2002. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here?. Syst. Biol. 51: 331363.
  • Ferrier, S. and Watson, G. 1997. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. – Environment Australia, Canberra, <http://www.deh.gov.au/biodiversity/publications/technical/surrogates/>.
  • Ferrier, S. et al. 2002a. Extended statistical approaches to modelling spatial pattern in biodiversity: the north-east New South Wales experience. I. Species-level modelling. Biodiv. Conserv. 11: 22752307.
  • Ferrier, S. et al. 2002b. Extended statistical approaches to modelling spatial pattern in biodiversity: the north-east New South Wales experience. II. Community-level modelling. Biodiv. Conserv. 11: 23092338.
  • Fielding, A. H. and Bell, J. F.. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 3849.
  • Friedman, J. H., Hastie, T. and Tibshirani, R.. 2000. Additive logistic regression: a statistical view of boosting. Ann. Stat. 28: 337407.
  • Funk, V. and Richardson, K.. 2002. Systematic data in biodiversity studies: use it or lose it. Syst. Biol. 51: 303316.
  • Gelfand, A. E. et al. 2006. Explaining species distribution patterns through hierarchical modeling. Bayesian Analysis 1: 4192.
  • Gómez Pompa, A. and Nevling, L. I.. 1970. La Flora de Veracruz. Anales del Inst. de Biología de la UNAM, Bot. 31: 137171.
  • Goolsby, J. A.. 2004. Potential distribution of the invasive old world climbing, fern, Lygodium microphyllum in north and south America. Nat. Areas J. 24: 351353.
  • Graham, C. H. et al. 2004a. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19: 497503.
  • Graham, C. H. et al. 2004b. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58: 17811793.
  • Graham, C. H., Moritz, C. and Williams, S. E.. 2006. Habitat history improves prediction of biodiversity in a rainforest fauna. Proc. Natl. Acad. Sci. USA 103: 632636.
  • Guisan, A. and Zimmerman, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147186.
  • Guisan, A. and Hofer, U.. 2003. Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30: 12331243.
  • Guisan, A. and Thuiller, W.. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 9931009.
  • Guisan, A., Theurillat, J. P. and Kienast, F.. 1998. Predicting the potential distribution of plant species in an alpine environment. J. Veg. Sci. 9: 6574.
  • Hanley, J. A. and McNeil, B. J.. 1982. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology 143: 2936.
  • Hanski, I.. 1994. Patch occupancy dynamics in fragmented landscapes. Trends Ecol. Evol. 9: 131134.
  • Harrell, F. E.. 2001. Regression modeling strategies with applications to linear models, logistic regression and survival analysis. Springer.
  • Hastie, T., Tibshirani, R. and Friedman, J. H.. 2001. The elements of statistical learning: data mining, inference, and prediction. Springer.
  • Hijmans, R. J. et al. 2000. Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv. Biol. 14: 17551765.
  • Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 19651978.
  • Hirzel, A. H. and Guisan, A.. 2002. Which is the optimal sampling strategy for habitat suitability modelling?. Ecol. Modell. 157: 331341.
  • Hirzel, A. H. et al. 2002. Ecological-niche factor analysis: how to compute habitat- suitability maps without absence data?. Ecology 83: 20272036.
  • Huettmann, F.. 2005. Databases and science-based management in the context of wildlife and habitat: towards a certified ISO standard for objective decision-making for the global community by using the internet. J. Wildl. Manage. 69: 466472.
  • Hugall, A. et al. 2002. Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Natl. Acad. Sci. USA 99: 61126117.
  • Jaynes, E. T.. 1982. On the rationale of maximum entropy methods. Proc. the IEEE 70: 939952.
  • Kadmon, R., Farber, O. and Danin, A.. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13: 853867.
  • Kadmon, R., Farber, O. and Danin, A.. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl. 14: 401413.
  • Keating, K. A. and Cherry, S.. 2004. Use and interpretation of logistic regression in habitat selection studies. J. Wildl. Manage. 68: 774789.
  • Leathwick, J. R.. 2002. Intra-generic competition among Nothofagus in New Zealand's primary indigenous forests. Biodiv. Conserv. 11: 21772187.
  • Leathwick, J. R. and Austin, M. P.. 2001. Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology 82: 25602573.
  • Leathwick, J. R. et al. 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biol. 50: 20342052.
  • Leathwick, J. R. et al. in press. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. – Mar. Ecol. Progr. Ser.
  • Liu, C. et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385393.
  • Loiselle, B. A. et al. 2003. Avoiding pitfalls of using species distribution models in conservation planning. Conserv. Biol. 17: 15911600.
  • Lowe, D. G.. 1995. Similarity metric learning for a variable-kernel classifier. Neural Comput 7: 7285.
  • Luoto, M. et al. 2005. Uncertainty of bioclimate envelope models based on geographical distribution of species. Global Ecol. Biogeogr. 14: 575584.
  • Mac Nally, R. and Fleishman, E.. 2004. A successful predictive model of species richness based on indicator species. Conserv. Biol. 18: 646654.
  • McCarthy, M. A. and Masters, P.. 2005. Profiting from prior information in Bayesian analyses of ecological data. J. Appl. Ecol. 42: 10121019.
  • Moilanen, A. et al. 2005. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc. R. Soc. B 272: 18851891.
  • Moisen, G. G. and Frescino, T. S.. 2002. Comparing five modeling techniques for predicting forest characteristics. Ecol. Modell. 157: 209225.
  • Muñoz, J. and Fellicísimo, Á. M.. 2004. Comparison of statistical methods commonly used in predictive modeling. J. Veg. Sci. 15: 285292.
  • Murphy, A. H. and Winkler, R. L.. 1992. Diagnostic verification of probability forecasts. Int. J. Forecasting 7: 435455.
  • Pearce, J. and Ferrier, S.. 2000a. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133: 225245.
  • Pearce, J. and Ferrier, S.. 2000b. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Modell. 128: 127147.
  • Pearce, J. L. and Boyce, M. S. in press. Modelling distribution and abundance with presence-only data. – J. Appl. Ecol., in press.
  • Pearce, J., Ferrier, S. and Scotts, D.. 2001. An evaluation of the predictive performance of distributional models for flora and fauna in norht-east New South Wales. J. Environ. Manage. 62: 171184.
  • Peterson, A. T.. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quart. Rev. Biol. 78: 419433.
  • Peterson, A. T.. 2005. Kansas gap analysis: the importance of validating distributional models before using them. Southwest. Nat, pp. 230236.
  • Peterson, A. T., Martinez-Meyer, E. and Gonzalez-Salazar, C.. 2004. Reconstructing the pleistocene geography of the Aphelocoma jays (Corvidae). Biodiv. Res. 10: 237246.
  • Phillips, S. J., Dudik, M. and Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. – In: Proc. of the 21st International Conference on Machine Learning, Banff, Canada, 2004.
  • Phillips, S. J., Anderson, R. P. and Schapire, R. E.. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231259.
  • Pielke Jr, R. A.. 2003. The role of models in prediction for decision. – In: Canham, C., Cole, J. and Lauenroth, W. K. (eds), Models in ecosystem science. Princeton Univ. Press, pp. 111135.
  • Randin, C. F. et al. in press. Are species distribution models transferable in space? – J. Biogeogr.
  • Rapoport, E. H.. 1982. Aerography. Permagon Press.
  • Raxworthy, C. J. et al. 2003. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426: 837841.
  • Reese, G. C. et al. 2005. Factors affecting species distribution predictions: a simulation modeling experiment. Ecol. Appl. 15: 554564.
  • Ricklefs, R.. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7: 115.
  • Ridgeway, G.. 1999. The state of boosting. Comput. Sci. Stat. 31: 172181.
  • Rosenzweig, M.. 1995. Species diversity in space and time. Cambridge Univ. Press.
  • Rushton, S. P., Ormerod, S. J. and Kerby, G.. 2004. New paradigms for modelling species distributions?. J. Appl. Ecol. 41: 193200.
  • Scotts, D. and Drielsma, M.. 2003. Developing landscape frameworks for regional conservation planning: an approach integrating fauna spatial distributions and ecological principles. Pac. Conserv. Biol. 8: 235254.
  • Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 15551568.
  • Silverman, B. W.. 1986. Density estimation for statistics and data analysis. Chapman and Hall.
  • Skov, F. and Svenning, J. C.. 2004. Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27: 366380.
  • Sneath, P. H. A. and Sokal, R. R.. 1973. Numerical taxonomy – the principles and practice of numerical classification. W. H. Freeman.
  • Soberon, J., Llorente, J. B. and Onate, L.. 2000. The use of specimen – label databases for conservation purposes: an example using Mexican papilionid and pierid butterflies. Biodiv. Conserv. 9: 14411466.
  • Soberón, J. M. and Peterson, A. T.. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2: 110.
  • Spiegelhalter, D. et al. 2003a. WinBUGS user manual, version 1.4. MRC Biostatistics Unit, Cambridge, UK.
  • Spiegelhalter, D. J. et al. 2003b. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64: 583639.
  • Stockwell, D. and Peters, D.. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inform. Sci. 13: 143158.
  • Stockwell, D. R. B. and Peterson, A. T.. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148: 113.
  • Thomas, C. D. et al. 2004. Extinction risk from climate change. Nature 427: 145148.
  • Thornton, P. E., Running, S. W. and White, M. A.. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190: 214251.
  • Thuiller, W.. 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biol. 10: 20202027.
  • Thuiller, W. et al. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron species in the Cape Floristic Region. Ecology 85: 16881699.
  • Thuiller, W. et al. 2005. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102: 82458250.
  • Tibshirani, R.. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58: 267288.
  • Turner, W. et al. 2003. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18: 306314.
  • Tyre, A. J., Possingham, H. P. and Lindenmayer, D. B.. 2001. Matching observed pattern with ecological process: can territory occupancy provide information about life history parameters?. Ecol. Appl. 11: 17221738.
  • Van Horne, B.. 1983. Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47: 893901.
  • Venier, L. A. et al. 2001. Models of large-scale breeding-bird distribution as a function of macro-climate in Ontario, Canada. J. Biogeogr. 26: 315328.
  • Walker, P. A. and Cocks, K. D.. 1991. HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species. Global Ecol. Biogeogr. Lett. 1: 108118.
  • Wintle, B. A. and Bardos, D. C. in press. Modelling species habitat relationships with spatially autocorrelated observation data. – Ecol. Appl.
  • Yee, T. W. and Mitchell, N. D.. 1991. Generalized additive models in plant ecology. J. Veg. Sci. 2: 587602.
  • Zaniewski, A. E., Lehmann, A. and Overton, J. M.. 2002. Predicting species distribution using presence-only data: a case study of native New Zealand ferns. Ecol. Modell. 157: 261280.
  • Zheng, B. and Agresti, A.. 2000. Summarizing the predictive power of a generalized linear model. Stat. Med. 19: 17711781.