SEARCH

SEARCH BY CITATION

References

  • Aiken, L.S. & West, S.G. (1991) Multiple Regression: Testing and Interpreting Interactions. Sage Publications, Newbury Park.
  • Arnold, S.J. & Wade, M.J. (1984) On the measurement of natural and sexual selection: theory. Evolution, 38, 709719.
  • Azen, R. & Budescu, D.V. (2003) The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8, 129148.
  • Azen, R. & Budescu, D.V. (2006) Comparing predictors in multivariate regression models: an extension of dominance analysis. Journal of Educational and Behavioral Statistics, 31, 157180.
  • Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.-S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127135.
  • Bowerman, B.L. & O’Connell, R.T. (1990) Linear Statistical Models: An Appllied Approach, 2nd edn. Duxvury Press, Belmont, CA.
  • Bring, J. (1994) How to standardize regression coefficients. American Statistician, 48, 209213.
  • Bring, J. (1996) A geometric approach to compare variables in a regression model. American Statistician, 50, 5762.
  • Brodie, E.D., Moore, A.J. & Janzen, F.J. (1995) Visualizing and quantifying natural selection. Trends in Ecology & Evolution, 10, 313318.
  • Budescu, D. V. (1993) Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114, 542551.
  • Burnham, K.P. & Anderson, D.R (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, Berlin.
  • Chao, Y.C.E., Zhao, Y., Kupper, L.L. & Nylander-French, L.A. (2008) Quantifying the relative importance of predictors in multiple linear regression analyses for public health studies. Journal of Occupational and Environmental Hygiene, 5, 519529.
  • Engqvist, L. (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour, 70, 967971.
  • Faraway, J.J. (2005) Linear Models in R. Chapman & Hall/CRC, Boca Raton, FL, USA.
  • Garamszegi, L.Z., Calhim, S., Dochtermann, N., Hegyi, G., Hurd, P.L., Jørgensen, C., Kutsukake, N., Lajeunesse, M.J., Pollard, K.A., Schielzeth, H., Symonds, M.R.E. & Nakagawa, S. (2009) Changing philosophies and tools for statistical inferences in behavioral ecology. Behavioral Ecology, 20, 13761381.
  • Gelman, A. (2005) Analysis of variance: why it is more important than ever. Annals of Statistics, 33, 131.
  • Gelman, A. (2008) Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine, 27, 28652873.
  • Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, UK.
  • Healy, M.J.R. (1990) Measuring importance. Statistics in Medicine, 9, 633637.
  • Johnson, J.W. (2000) A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 119.
  • Johnson, C.R. & Neyman, J. (1936) Tests of certain linear hypothesis and their appplication in some educational problems. Statistical Research Memoirs, 1, 5793.
  • King, G. (1986) How not to lie with statistics: avoiding common mistakes in quantitative political science. American Journal of Political Science, 30, 666687.
  • Mayer, L.S. & Younger, M.S. (1976) Estimation of standardized regression coefficients. Journal of the American Statistical Association, 71, 154157.
  • Nakagawa, S. & Cuthill, I.C. (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews, 82, 591605.
  • Nakagawa, S. & Cuthill, I.C. (2009) Corrigendum. Biological Reviews, 84, 515.
  • Neter, J., Kutner, M.H., Nachtsheim, C.J. & Wasserman, W. (1996) Applied Linear Statistical Models, 4th edn. Irwin, Chicago, IL, USA.
  • Nussey, D.H., Wilson, A.J. & Brommer, J.E. (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20, 831844.
  • van de Pol, M. & Verhulst, S. (2006) Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766773.
  • van de Pol, M.V. & Wright, J. (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753758.
  • Quinn, G. P. & Keough, M.J. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.
  • R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Schielzeth, H. & Forstmeier, W. (2009) Conclusions beyond support: overconfident estimates in mixed models. Behavioral Ecology, 20, 416420.
  • Shipley, B. (2000) Cause and Correlation in Biology: A User’s Guide to Path Analysis, Strutural Equations and Causal Inference. Cambridge University Press, Cambridge, UK.
  • Sokal, R.R. & Rohlf, F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. W.H. Freeman and Company, New York, NY, USA.
  • Stephens, P.A., Buskirk, S.W. & del Rio, C.M. (2007) Inference in ecology and evolution. Trends in Ecology & Evolution, 22, 192197.
  • Tabachnick, B.G. & Fidell, L.S. (2006) Unsing Multivariate Statistics, 4th edn. Allyn & Bacon, Boston, MA, USA.
  • Wright, S. (1918) On the nature of size factors. Genetics, 3, 367374.
  • Zar, J.H. (1999) Biostatistical Analysis, 4th edn. Prentice Hall, Upper Saddle River, NJ, USA.