SEARCH

SEARCH BY CITATION

References

  • Armstrong, R. (2004) Baiting operations: Western Shield review – February 2003. Conservation Science Western Australia, 5, 3150.
  • Bellman, R. (1957) Dynamic Programming. Princeton University Press, Princeton, NJ.
  • Benshemesh, J. (2000) National Recovery Plan for Malleefowl. Technical report, Environment Australia, Canberra, ACT, Australia.
  • Bode, M., Wilson, K.A., Brooks, T., Turner, W.R., Mittermeier, R.A., McBride, M.F., Underwood, E.C. & Possingham, H.P. (2008) Cost effective global conservation spending is robust to taxonomic group. Proceedings of the Natural Academy of Sciences of the United States of America, 105, 64986501.
  • Bogich, T. & Shea, K. (2008) A state-dependent model for the optimal management of an invasive metapopulation. Ecological Applications, 18, 748761.
  • Costello, C. & Polasky, S. (2004) Dynamic reserve site selection. Resource and Energy Economics, 26, 157174.
  • Day, J.R. & Possingham, H.P. (1995) A stochastic metapopulation model with variability in patch size and position. Theoretical Population Biology, 48, 333360.
  • Forsell, N. (2009) Planning under risk and uncertainty: optimizing spatial forest management strategies. PhD thesis, Swedish University of Agricultural Sciences.
  • Forsell, N., Wikström, P., Garcia, F., Sabbadin, R., Blennow, K. & Eriksson, L.O. (in press) Management of the risk of wind damage in forestry: a graph-based Markov decision process approach. Annals of Operations Research, doi: 10.1007/s10479-009-0522-7.
  • Garcia, F. (1999) Use of reinforcement learning and simulation to optimize wheat crop technical management. Proceedings of the International Conference on Modelling and Simulation (MODSIM) (eds L. Oxley & F. Scrimgeour), pp. 801806. The Modelling and Simulation Society of Australia and New Zealand Inc., Hamilton, New Zealand.
  • Garcia, F. & Sabbadin, R. (2001) Solving large weakly coupled Markov decision processes: application to forest management. Proceedings of the International Conference on Modelling and Simulation (MODSIM) (eds F. Ghassemi, D. Post, M. Sivapalan & R. Vertessy), pp. 17071712. The Modelling and Simulation Society of Australia and New Zealand Inc., Canberra.
  • Haight, R., Cypher, B., Kelly, P., Phillips, S., Ralls, K. & Possingham, H. (2004) Optimizing reserve expansion for disjunct populations of San Joaquin kit fox. Biological Conservation, 117, 6172.
  • Hilborn, R. (1976) Optimal exploitation of multiple stocks by a common fishery: a new methodology. Journal of the Fisheries Research Board of Canada, 33, 15.
  • Hunter, C.M. & Runge, M.C. (2004) The importance of environmental vari ability and management control error to optimal harvest policies. The Journal of Wildlife Management, 68, 585594.
  • Johnson, F., Moore, C., Kendall, W., Dubovsky, J., Caithamer, D., Kelley, J. & Williams, B. (1997) Uncertainty and the management of mallard harvests. The Journal of Wildlife Management, 61, 202216.
  • Lubow, B. (1996) Optimal translocation strategies for enhancing stochastic metapopulation viability. Ecological Applications, 6, 12681280.
  • Mangel, M. & Clark, C.W. (2000) Dynamic State Variable Models in Ecology: Methods and Applications. Oxford Series in Ecology and Evolution. Oxford University Press, New York, NY.
  • Mawson, P.R. (2004) Captive breeding programs and their contribution to Western Shield: Western Shield review – February 2003. Conservation Science Western Australia, 5, 122130.
  • McCarthy, M.A., Possingham, H.P. & Gill, A.M. (2001) Using stochastic dynamic programming to determine optimal fire management for Banksia ornata. Journal of Applied Ecology, 38, 585592.
  • McDonald-Madden, E., Bode, M., Game, E., Grantham, H. & Possingham, H. (2008) The need for speed: informed land acquisitions for conservation in a dynamic property market. Ecology Letters, 11, 11691177.
  • Meir, E., Andelman, S. & Possingham, H.P. (2004) Does conservation planning matter in a dynamic and uncertain world? Ecology Letters, 7, 615622.
  • Nicol, S. & Possingham, H.P. (2010) Should metapopulation restoration strategies increase patch area of number of patches? Ecological Applications, 20, 566581.
  • Péret, L. & Garcia, F. (2004) On-line search for solving Markov decision processes via heuristic sampling. 16th European Conference on Artificial Intelligence (eds R. de Mántaras & L. Saitta), pp. 530535. IOS press, Valencia, Spain.
  • Peyrard, N., Sabbadin, R., Pelzer, E. & Aubertot, J. (2007) A graph-based Markov decision process framework for optimising integrated management of diseases in agriculture. Proceedings of the International Conference on Modelling and Simulation (MODSIM) (eds L. Oxley & D. Kulasiri), pp. 21752181. The Modelling and Simulation Society of Australia and New Zealand Inc., Christchurch, New Zealand.
  • Possingham, H.P. (1996) Decision theory and biodiversity management: how to manage a metapopulation. Frontiers of Population Ecology (eds R.B. Floyd, A.W. Sheppard & P.J.D. Barro), pp. 391398. CSIRO, Melbourne.
  • Possingham, H.P., Day, J.R., Goldfinch, M. & Salzborn, F. (1993) The mathematics of designing a network of protected areas for conservation. 12th Australian Operations Research Conference (eds D. Sutton, F. Cousins & C. Pierce), pp. 536545. The Australian Society for Operations Research Inc., Adelaide.
  • Possingham, H., Andelman, S., Noon, B., Trombulak, S. & Pulliam, H. (2001) Making smart conservation decisions. Conservation Biology: Research Priorities for the Next Decade (eds M.E. Soulé & G.H. Orians), pp. 225244. Island Press, Washington.
  • Priddel, D. & Wheeler, R. (1996) Effect of age at release on the susceptibility of captive-reared malleefowl Leipoa ocellata to predation by the introduced fox Vulpes vulpes. EMU, 96, 3241.
  • Priddel, D. & Wheeler, R. (1997) Efficacy of fox control in reducing the mortality of released captive-reared malleefowl, Leipoa ocellata. CSIRO Wildlife Research, 24, 469482.
  • Puterman, M. ed. (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley and Sons, New York, NY.
  • Regan, T., McCarthy, M.A., Baxter, P., Panetta, F. & Possingham, H. (2006) Optimal eradication: when to stop looking for an invasive plant. Ecology Letters, 9, 759766.
  • Richards, S., Possingham, H. & Tizard, J. (1999) Optimal fire management for maintaining community diversity. Ecological Applications, 9, 880892.
  • Rout, T., Hauser, C. & Possingham, H. (2007) Minimise long-term loss or maximise short-term gain? Optimal translocation strategies for threatened species. Ecological Modelling, 201, 6774.
  • Shea, K. & Possingham, H.P. (2000) Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. Journal of Applied Ecology, 37, 7786.
  • Spring, D. & Kennedy, J. (2005) Existence value and optimal timber-wildlife management in a ammable multistand forest. Ecological Economics, 55, 365379.
  • Strange, N., Thorsen, B.J. & Bladt, J. (2006) Optimal reserve selection in a dynamic world. Biological Conservation, 131, 3341.
  • Sutton, R. & Barto, A. (1998) Reinforcement Learning: An Introduction. MIT Press, Cambridge, Massachusetts.
  • Tenhumberg, B., Tyre, A. & Roitberg, B. (2000) Stochastic variation in food availability inuences weight and age at maturity. Journal of Theoretical Biology, 202, 257272.
  • Thompson, P., Marlow, N., Rose, K. & Kok, N. (2000) The effectiveness of a large-scale baiting campaign and an evaluation of a buffer zone strategy for fox control. CSIRO Wildlife Research, 27, 465472.
  • Todorov, E. (2009) Efficient computation of optimal actions. Proceedings of the Natural Academy of Sciences of the United States of America, 106, 1147811483.
  • Tuck, G. & Possingham, H.P. (2000) Marine protected areas for spatially structured exploited stocks. Marine Ecology Progress Series, 192, 89101.
  • Walters, C.J. & Hilborn, R. (1975) Optimal harvest strategies for salmon in relation to environmental variability and uncertain production parameters. Journal of Fisheries Research Board of Canada, 32, 17771784.
  • Westphal, M.I., Pickett, M., Getz, W.M. & Possingham, H.P. (2003) The use of stochastic dynamic programming in optimal landscape reconstruction for metapopulations. Ecological Applications, 13, 543555.
  • Wilson, K.A., McBride, M.F., Bode, M. & Possingham, H.P. (2006) Prioritizing global conservation efforts. Nature, 440, 337340.