SEARCH

SEARCH BY CITATION

References

  • Anderson, R.M. & May, R.M. (1979) Population biology of infectious diseases. Nature, 280, 361367.
  • Buzby, M., Neckels, D., Antolin, M.F. & Estep, D. (2008) Analysis of the sensitivity properties of a model of vector-borne bubonic plague. Journal of the Royal Society Interface, 5, 10991107.
  • Caswell, H. (2001) Matrix Population Models. Construction Analysis and Interpretation, 2nd edn. Sinauer Associates, Inc., Sunderland, MA, USA.
  • Caswell, H. (2007) Sensitivity analysis of transient population dynamics. Ecology Letters, 10, 115.
  • Caswell, H. (2008) Perturbation analysis of nonlinear matrix population models. Demographic Research, 18, 59116.
  • Caswell, H. (2009) Sensitivity and elasticity of density-dependent population models. Journal of Difference Equations and Applications, 15, 349369.
  • Charlesworth, B. (1994) Evolution in Age-Structured Populations, 2nd edn. Cambridge University Press, Cambridge, UK.
  • Dennis, B., Desharnais, R.A., Cushing, J.M. & Costantino, R.F. (1997) Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. Journal of Animal Ecology, 66, 704729.
  • Ellner, S. (1996) Environmental fluctuations and the maintainance of genetic diversity in age or stage structured populations. Bulletin of Mathematical Biology, 58, 103127.
  • Ezard, T.H.G., Bullock, J.M., Dalgleish, H.J., Millon, A., Pelletier, F., Ozgul, A. & Koons, D.N. (2010) Matrix models for a changeable world: the importance of transient dynamics in population management. Journal of Applied Ecology, 47, 515523.
  • Fox, G.A. & Gurevitch, J. (2000) Population numbers count: tools for near-term demographic analysis. American Naturalist, 156, 242256.
  • Golubitsky, M. & Schaeffer, D.G. (1985) Singularities and Groups in Bifurcation Theory, Vol. I. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.
  • Govaerts, W. (2000) Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia.
  • Govaerts, W. & Ghaziani, R.K. (2006) Nonlinear bifurcation analysis of a nonlinear stage structured cannibalism population model. Journal of Difference Equations and Applications, 12, 471500.
  • Grant, A. & Benton, T.G. (2003) Density-dependent populations require density-dependent elasticity analysis: an illustration using the lpa model of tribolium. Journal of Animal Ecology, 72, 94105.
  • Grimm, V. & Railsback, S. (2005) Individual Based Modeling and Ecology. Princeton University Press, Princeton, NJ, USA.
  • Haridas, C.V. & Tuljapurkar, S. (2007) Time, transients and elasticity. Ecology Letters, 10, 11431153.
  • Hedrick, P. (2009) Genetics of Populations, 4th edn. Jones and Bartlett Publishers, Sudbury, MA, USA.
  • Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E. & Woodward, C.S. (2005) SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31, 363396.
  • Hodgson, D., Townley, S. & McCarthy, D. (2006) Robustness: predicting the effects of life history perturbations on stage-structured population dynamics. Theoretical Population Biology, 70, 214224.
  • Koons, D.N., Grand, J.B., Zinner, B. & Rockwell, R.F. (2005) Transient population dynamics: relations to life history and initial population state. Ecological Modelling, 185, 283287.
  • Kuznetsov, Y. (2004) Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York.
  • Mei, Z. (2000) Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer-Verlag, Berlin.
  • Townley, S. & Hodgson, D.J. (2008) Erratum et addendum: transient amplification and attenuation in stage-structured population dynamics. Journal of Applied Ecology, 45, 18361839.
  • Townley, S., Carslake, D., Kellie-Smith, O., McCarthry, D. & Hodgson, D.J. (2007) Predicting transient amplification in perturbed ecological systems. Journal of Applied Ecology, 44, 12431251.
  • Trefethen, L.N. & Embree, M. (2005) Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton, NJ, USA.
  • Tuljapurkar, S. (1989) An uncertain life – demography in random-environment. Theoretical Population Biology, 35, 227294.
  • Wikan, A. (2001) From chaos to chaos. an analysis of a discrete age-structured prey-predator model. Journal of Mathematical Biology, 43, 471500.
  • Xiu, D. (2010) Numerical Methods for Stocahstic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ, USA.
  • Yearsley, J.M. (2004) Transient population dynamics and short-term sensitivity analysis of matrix population models. Ecological Modelling, 177, 245258.