SEARCH

SEARCH BY CITATION

References

  • Aitken, A.C. (1935) On the least squares and linear combinations of observations. Proceedings of the Royal Society of Edinburgh, 55, 4248.
  • Bement, T.R. & Williams, J.S. (1969) Variance of weighted regression estimators when sampling errors are independent and heteroscedastic. Journal of the American Statistical Association, 64, 13691382.
  • Berkey, C.S., Hoaglin, D.C., Mosteller, F. & Colditz, G.A. (1995) A random-effects regression model for meta-analysis. Statistics in Medicine, 14, 395411.
  • Burridge, C.P., Craw, D., Fletcher, D. & Waters, J.M. (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Molecular Biology and Evolution, 25, 624633.
  • Chastel, O., Weimerskirch, H. & Jouventin, P. (1995) Body condition and seabird reproductive performance: a study of three petrel species. Ecology, 76, 22402246.
  • Cochran, W.G. (1954) The combination of estimates from different experiments. Biometrics, 10, 101129.
  • Cox, D.R. (2006) Combination of data. Encyclopedia of Statistical Sciences, 2nd edn (eds S. Kotz, C.B. Read, N. Balakrishnan & B. Vidakovic), pp. 10741081. Wiley, New York.
  • Englund, G., Sarnelle, O. & Cooper, S.D. (1999) The importance of data-selection criteria: meta-analyses of stream predation experiments. Ecology, 80, 11321141.
  • Forstmeier, W. (2005) Quantitative genetics and behavioural correlates of digit ratio in the zebra finch. Proceedings of the Royal Society B: Biological Sciences, 272, 26412649.
  • Freedman, D.A. & Berk, R.A. (2008) Weighting regressions by propensity scores. Evaluation Review, 32, 392409.
  • Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.
  • Gurevitch, J. & Hedges, L.V. (1999) Statistical issues in ecological meta-analyses. Ecology, 80, 11421149.
  • Gurevitch, J. & Mengersen, K. (2010) A statistical view of synthesizing patterns of species richness along productivity gradients: devils, forests, and trees. Ecology, 91, 25532560.
  • Hey, J. & Nielsen, R. (2006) An implementation of the MCMC method for the analysis of genetic data under the ‘Isolation with Migration’ model of population divergence. http://genfaculty.rutgers.edu/hey/software (accessed 31 January 2011).
  • Kempthorne, O. & Tandon, O.B. (1953) The estimation of heritability by regression of offspring on parent. Biometrics, 9, 90100.
  • Knowles, S.C.L., Nakagawa, S. & Sheldon, B.C. (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Functional Ecology, 23, 405415.
  • Korn, E.L. & Graubard, B.I. (1995) Examples of differing weighted and unweighted estimates from a sample survey. The American Statistician, 49, 291295.
  • Kutner, M., Nachtsheim, C., Neter, J. & Li, W. (2004) Applied Linear Statistical Models, 5th edn. McGraw-Hill, Irwin.
  • Murtaugh, P.A. (2007) Simplicity and complexity in ecological data analysis. Ecology, 88, 5662.
  • Osenberg, C.W., Sarnelle, O., Cooper, S.D. & Holt, R.D. (1999) Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology, 80, 11051117.
  • Royle, J.A. & Dorazio, R.M. (2008) Hierarchical Modeling and Inference in Ecology: The Analysis of Data From Populations, Metapopulations and Communities. Academic Press, San Diego.
  • Searle, S.R. (1982) Matrix Algebra Useful for Statistics. Wiley, New York.
  • Searle, S.R., Casella, G. & McCulloch, C.E. (1992) Variance Components. Wiley, New York.
  • Thompson, S.G. & Sharp, S.J. (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine, 18, 26932708.
  • Verdú, M. & Travaset, A. (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology, 86, 13851394.
  • Young, L.J., Campbell, N.L. & Capuano, G.A. (1999) Analysis of overdispersed count data from single-factor experiments: a comparative study. Journal of Agricultural, Biological, and Environmental Statistics, 4, 258275.