SEARCH

SEARCH BY CITATION

References

  • Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 4247.
  • Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 15041513.
  • Arlot, S. & Celisse, A. (2010) A survey of cross-validation procedures for model selection. Statistical Surveys, 4, 4079.
  • Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101118.
  • Barbosa, A.M., Real, R. & Vargas, J.M. (2009) Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecological Modelling, 220, 747754.
  • Bishop, C.M. (1995) Neural Networks for Pattern Recognition. Clarendon Press, Oxford, UK.
  • Boyce, M.S., Vernier, P.R., Nielsen, S.E. & Schmiegelow, F.K.A. (2002) Evaluating resource selection functions. Ecological Modelling, 157, 281300.
  • Breiman, L. (2001) Random forests. Machine Learning, 45, 532.
  • Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16, 11451157.
  • Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference. Springer, New York, NY.
  • Burnham, K.P. & Anderson, D.R. (2004) Multimodel inference – understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261304.
  • Chatfield, C. (1995) Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A (Statistics in Society), 158, 419466.
  • Cressie, N.A.C. (1993) Statistics for Spatial Data. Wiley, New York.
  • Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A. & Hess, K.T. (2007) Random forests for classification in ecology. Ecology, 88, 27832792.
  • De’ath, G. & Fabricius, K.E. (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81, 31783192.
  • Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609628.
  • Drake, J.M., Randin, C. & Guisan, A. (2006) Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43, 424432.
  • Dunham, J.B., Adams, S.B., Schroeter, R.E. & Novinger, D.C. (2002) Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America. Reviews in Fish Biology and Fisheries, 12, 373391.
  • Efron, B. (1986) How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81, 461470.
  • Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677697.
  • Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802813.
  • Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129151.
  • Evans, J.S. & Cushman, S.A. (2009) Gradient modeling of conifer species using random forests. Landscape Ecology, 24, 673683.
  • Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 3849.
  • Fielding, A.H. & Haworth, P.F. (1995) Testing the generality of bird-habitat models. Conservation Biology, 9, 14661481.
  • Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York, NY, USA.
  • Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147186.
  • Hastie, T.J., Tibshirani, R.J. & Friedman, J.H. (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York, NY, USA.
  • Holden, Z.A., Morgan, P. & Evans, J.S. (2009) A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. Forest Ecology and Management, 258, 23992406.
  • Justice, A.C., Covinsky, K.E. & Berlin, J.A. (1999) Assessing the generalizability of prognostic information. Annals of Internal Medicine, 130, 515524.
  • Kennard, M.J., Olden, J.D., Arthington, A.H., Pusey, B.J. & Poff, N.L. (2007) Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia. Canadian Journal of Fisheries and Aquatic Sciences, 64, 13461359.
  • Lawler, J.J., White, D., Neilson, R.P. & Blaustein, A.R. (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biology, 12, 15681584.
  • Ledig, F.T., Rehfeldt, G.E., Saenz-Romero, C. & Flores-Lopez, C. (2010) Projections of suitable habitat for rare species under global warming scenarios. American Journal of Botany, 97, 970987.
  • Lek, S. & Guegan, J.F. (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 120, 6573.
  • Lichstein, J.W., Simons, T.R., Shriner, S.A. & Franzreb, K.E. (2002) Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72, 445463.
  • Lobo, J.M., Jimenez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145151.
  • Magnuson, J.J., Crowder, L.B. & Medvick, P.A. (1979) Temperature as an ecological resource. American Zoologist, 19, 331343.
  • Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921931.
  • McHugh, P. & Budy, P. (2006) Experimental effects of nonnative brown trout on the individual- and population-level performance of native Bonneville cutthroat trout. Transactions of the American Fisheries Society, 135, 14411455.
  • Olden, J.D. & Jackson, D.A. (2000) Torturing data for the sake of generality: how valid are our regression models? Ecoscience, 7, 501510.
  • Olden, J.D. & Jackson, D.A. (2001) Fish-habitat relationships in lakes: gaining predictive and explanatory insight using artificial neural networks. Transactions of the American Fisheries Society, 130, 878897.
  • Olden, J.D. & Jackson, D.A. (2002) Illuminating the “black box”: understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135150.
  • Olden, J.D., Jackson, D.A. & Peres-Neto, P.R. (2002) Predictive models of fish species distributions: a comment on proper validation and chance predictions. Transactions of the American Fisheries Society, 131, 329336.
  • Olden, J.D., Lawler, J.J. & Poff, N.L. (2008) Machine learning methods without tears: a primer for ecologists. Quarterly Review of Biology, 83, 171193.
  • Peters, R.H. (1991) A Critique of Ecology. Cambridge University Press, Cambridge, UK.
  • Peterson, A.T., Papeş, M. & Eaton, M. (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30, 550560.
  • Peterson, A.T., Papeş, M. & Kluza, D.A. (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51, 863868.
  • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.
  • Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 16891703.
  • Raudenbush, S.W. & Bryk, A.S. (2002) Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications, London, UK.
  • Sarle, W.S. (1995) Stopped training and other remedies for overfitting. Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, pp. 352360. Interface Foundation of North America, Fairfax Station, VA, USA.
  • Shao, J. (1993) Linear model selection by cross-validation. Journal of the American Statistical Association, 88, 486494.
  • Stockwell, D.R.B. & Noble, I.R. (1992) Induction of sets of rules from animal distribution data – a robust and informative method of data analysis. Mathematics and Computers in Simulation, 33, 385390.
  • Sundblad, G., Harma, M., Lappalainen, A., Urho, L. & Bergstrom, U. (2009) Transferability of predictive fish distribution models in two coastal systems. Estuarine Coastal and Shelf Science, 83, 9096.
  • Thomas, J.A. & Bovee, K.D. (1993) Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8, 285294.
  • Thurow, R.F., Lee, D.C. & Rieman, B.E. (1997) Distribution and status of seven native salmonids in the Interior Columbia Basin and Portions of the Klamath River and Great Basins. North American Journal of Fisheries Management, 17, 10941110.
  • Tuanmu, M.-N., Viña, A., Roloff, G.J., Liu, W., Ouyang, Z., Zhang, H. & Liu, J. (2011) Temporal transferability of wildlife habitat models: implications for habitat monitoring. Journal of Biogeography, 38, 15101523.
  • Varela, S., Rodríguez, J. & Lobo, J.M. (2009) Is current climatic equilibrium a guarantee for the transferability of distribution model predictions? A case study of the spotted hyena. Journal of Biogeography, 36, 16451655.
  • Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42, 720730.
  • Wenger, S.J., Isaak, D.J., Dunham, J.B., Fausch, K.D., Luce, C.H., Neville, H.M., Rieman, B.E., Young, M.K., Nagel, D.E., Horan, D.L. & Chandler, G.W. (2011a) Role of climate and invasive species in structuring trout distributions in the Interior Columbia Basin. Canadian Journal of Fisheries and Aquatic Sciences, 68, 9881008.
  • Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dunham, J.B., Dauwalter, D.C., Young, M.K., Elsner, M.M., Rieman, B.E., Hamlet, A.F. & Williams, J.E. (2011b) Flow regime, biotic interactions and temperature drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America, 108, 1417514180.
  • Williams, J.W., Jackson, S.T. & Kutzbacht, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 57385742.