Simapse – simulation maps for ecological niche modelling

Authors

  • Pedro Tarroso,

    Corresponding author
    1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
    2. Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
    Search for more papers by this author
  • Sílvia B. Carvalho,

    1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
    Search for more papers by this author
  • José Carlos Brito

    1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
    2. Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
    Search for more papers by this author

Correspondence author. E-mail: ptarroso@cibio.up.pt

Summary

1. Artificial neural networks (ANNs) are known for their powerful predictive power in the analysis of both linear and nonlinear relationships. They have been successfully applied to several fields including ecological modelling and predictive species’ distributions.

2. Here we present Simapse – Simulation Maps for Ecological Niche Modelling, a free and open-source application written in Python and available to the most common platforms. It uses ANNs with back-propagation to build spatially explicit distribution models from species data (presence/absence, presence-only and abundance).

3. The main features include the automatic production of replicates with different sub-sampling methods and total control of ANN structure and learning parameters.

4. Simapse uses common text formats as main input and output and provides assessment of variable importance and behaviour and measurement of model fitness.

Ancillary