SEARCH

SEARCH BY CITATION

References

  • Brisbin Jr., I.L., Collins, C.T., White, G.C. & McCallum, D.A. (1987) A new paradigm for the analysis and interpretation of growth data: the shape of things to come. Auk, 104, 552554.
  • Bunnefeld, N., Börger, L., Van Moorter, B., Rolandsen, C.M., Dettki, H., Solberg, E.J. & Ericsson, G. (2011) A model-driven approach to quantify migration patterns: individual, regional and yearly differences. Journal of Animal Ecology, 80, 466476.
  • Chiaradia, A. & Nisbet, I.C.T. (2006) Plasticity in parental provisioning and chick growth in Little Penguins Eudyptula minor in years of high and low breeding success. Ardea, 94, 257270.
  • Gedeon, T.D., Wong, P.M. & Harris, D. (1995) Balancing bias and variance: network topology and pattern set reduction techniques. From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks (eds J. Mira & F. Sandoval), pp. 551558. Springer-Verlag, Berlin.
  • Huin, N. & Prince, P.A. (2000) Chick growth in albatrosses: curve fitting with a twist. Journal of Avian Biology, 31, 418425.
  • Kohn, R., Smith, M. & Chan, D. (2001) Nonparametric regression using linear combinations of basis functions. Statistics and Computing, 11, 313322.
  • Nelder, J.A. (1962) Note: an alternative form of a generalized logistic equation. Biometrics, 18, 614616.
  • Nisbet, I.C.T. (1975) Selective effects of predation in a tern colony. Condor, 77, 221226.
  • Nisbet, I.C.T., Wilson, K.J. & Broad, W.A. (1978) Common Terns raise young after death of their mates. Condor, 80, 106109.
  • Oswald, S.A. (2011) FlexParamCurve: Tools to Fit Flexible Parametric Curves. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://cran.r-project.org/web/packages/FlexParamCurve/index.html (accessed 6 December 2011).
  • Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A. & Turnbull, L.A. (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3, 245256.
  • Pinheiro, J. & Bates, D. (2000) Mixed-Effects Models in S and S-Plus. Springer-Verlag, Berlin.
  • Pinheiro, J., Bates, D.M., DebRoy, S. & Sarkar, D. (2007) nlme: Linear and Nonlinear Mixed Effects Models. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://cran.r-project.org/web/packages/nlme/index.html (accessed 6 December 2011).
  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org (accessed 6 December 2011).
  • Ritz, C. & Streibig, J.C. (2005) Bioassay analysis using R. Journal of Statistical Software, 12, 122.
  • Ritz, C. & Streibig, J.C. (2009) Nonlinear Regression with R. Use R!. Springer, New York, NY, USA.