SEARCH

SEARCH BY CITATION

References

  • Abdallah, C. (2011) Mathematical controllability of genomic networks. Proceedings of the National Academy of Sciences of the United States of America, 108, 1724317244.
  • Alarcon, R., Waser, N.M. & Ollerton, J. (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos, 117, 17961807.
  • Albert, R. & Barabasi, A.-L. (2002) Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 4797.
  • Albert, R., Jeong, H. & Barabasi, A. (2000) Error and attack tolerance of complex networks. Nature, 406, 378382.
  • Alon, U. (2007) Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8, 450461.
  • Baldock, K.C.R., Memmott, J., Ruiz-Guajardo, J.C., Roze, D. & Stone, G.N. (2010) Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology, 92, 687698.
  • Bansal, S., Read, J., Pourbohloul, B. & Meyers, L.A. (2010) The dynamic nature of contact networks in infectious disease epidemiology. Journal of Biological Dynamics, 4, 478489.
  • Barabasi, A. (2005) The origin of bursts and heavy tails in human dynamics. Nature, 435, 207211.
  • Bascompte, J. (2010) Structure and dynamics of ecological networks. Science, 329, 765766.
  • Bascompte, J. & Jordano, P. (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology Evolution and Systematics, 38, 567593.
  • Berger-Wolf, T. & Saia, J. (2006) A framework for analysis of dynamic social networks. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , pp. 523528. ACM Publishing, New York, NY, USA. doi: 10.1145/1150402.1150462
  • Berger-Wolf, T.Y., Tantipathananandh, C. & Kempe, D. (2010) Community identification in dynamic social networks. Link Mining: Models, Algorithms, and Applications (eds P.S. Yu, C. Faloutsos & J. Han), pp. 307336. Springer, New York, NY, USA.
  • Blonder, B. & Dornhaus, A. (2011) Time-ordered networks reveal limitations to information flow in ant colonies. PLoS ONE, 6, e20298.
  • Blumstein, D.T., Wey, T.W. & Tang, K. (2009) A test of the social cohesion hypothesis: interactive female marmots remain at home. Proceedings of the Royal Society of London. Series B, 276, 30073012.
  • Blüthgen, N. (2010) Why network analysis is often disconnected from community ecology. A critique and an ecologist’s guide. Basic and Applied Ecology, 11, 185195.
  • Blüthgen, N., Menzel, F. & Blüthgen, N. (2006) Measuring specialization in species interaction networks. BMC Ecology 2006, 6: 9.
  • Bode, N.W.F., Wood, A.J. & Franks, D.W. (2011) Social networks and models for collective motion in animals. Behavioral Ecology and Sociobiology, 65, 117130.
  • Borgatti, S.P. (2005) Centrality and network flow. Social Networks, 27, 5571.
  • Bryden, J., Funk, S., Geard, N., Bullock, S. & Jansen, V.A.A. (2011) Stability in flux: community structure in dynamic networks. Journal of The Royal Society Interface, 8, 10311040.
  • Carley, K.M. (2003) Dynamic Network Analysis. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers (eds R. Breiger, K.M. Carley & P. Pattison), pp. 133145. National Academies Press, Washington, DC, USA.
  • Cattuto, C., Broeck, W.V.d., Barrat, A., Colizza, V., Pinton, J.-F. & Vespignani, A. (2010) Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE, 5, e11596.
  • Centola, D. (2010) The spread of behavior in an online social network experiment. Science, 329, 11941197.
  • Centola, D. (2011) An experimental study of homophily in the adoption of health behavior. Science, 334, 12691272.
  • Chan, J., Holmes, A. & Rabadan, R. (2010) Network analysis of global influenza spread. PLoS Computational Biology, 6, e1001005.
  • Clauset, A. & Eagle, N. (2007) Persistence and periodicity in a dynamic proximity network. DIMACS Workshop on Computational Methods for Dynamic Interaction Networks .
  • Coll, M., Lotze, H. & Romanuk, T. (2008) Structural degradation in Mediterranean Sea food webs: testing ecological hypotheses using stochastic and mass-balance modelling. Ecosystems, 11, 939960.
  • Couzin, I. (2009) Collective cognition in animal groups. Trends in Cognitive Sciences, 13, 3643.
  • Croft, D., James, R. & Krause, J. (2008) Exploring Animal Social Networks. Princeton University Press, Princeton, NJ, USA.
  • Croft, D., Edenbrow, M., Darden, S., Ramnarine, I., van Oosterhout, C. & Cable, J. (2011a) Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 65, 22192227.
  • Croft, D.P., Madden, J.R., Franks, D.W. & James, R. (2011b) Hypothesis testing in animal social networks. Trends in Ecology & Evolution, 26, 502507.
  • Dale, M. & Fortin, M. (2010) From graphs to spatial graphs. Annual Review of Ecology Evolution and Systematics, 41, 2138.
  • Diestel, R. (2010) Graph Theory. Springer-Verlag, Heidelberg, Germany.
  • Drewe, J., Madden, J. & Pearce, G. (2009) The social network structure of a wild meerkat population: 1. Inter-group interactions. Behavioral Ecology and Sociobiology, 63, 12951306.
  • Dunlavy, D.M., Kolda, T.G. & Acar, E. (2011) Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data, 5, 127.
  • Dunne, J. & Williams, R. (2009) Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364, 17111723.
  • Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002) Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 1291712922.
  • Eppstein, M.J. & Molofsky, J. (2007) Invasiveness in plant communities with feedbacks. Ecology Letters, 10, 253263.
  • Fefferman, N. & Ng, K. (2007) How disease models in static networks can fail to approximate disease in dynamic networks. Physical Review E, 76, 031919.
  • Fehl, K., van der Post, D.J. & Semmann, D. (2011) Co-evolution of behaviour and social network structure promotes human cooperation. Ecology Letters, 14, 546551.
  • Flack, J.C., Girvan, M., De Waal, F.B.M. & Krakauer, D.C. (2006) Policing stabilizes construction of social niches in primates. Nature, 439, 426429.
  • Fletcher, R., Acevedo, M., Reichert, B., Pias, K. & Kitchens, W. (2011) Social network models predict movement and connectivity in ecological landscapes. Proceedings of the National Academy of Sciences of the United States of America, 108, 1928219287.
  • Franks, D., James, R., Noble, J. & Ruxton, G. (2009) A foundation for developing a methodology for social network sampling. Behavioral Ecology and Sociobiology, 63, 10791088.
  • Frantz, T.L. & Carley, K.M. (2009) Agent-based modeling within a dynamic network. Chaos and complexity in psychology: The theory of nonlinear dynamical systems (eds S.J. Guastello, M. Koopmans & D. Pincus), pp. 475505. Cambridge University Press, New York, NY, USA.
  • Franz, M. & Nunn, C.L. (2009) Network-based diffusion analysis: a new method for detecting social learning. Proceedings of the Royal Society B: Biological Sciences, 276, 18291836.
  • Funk, S., Salathe, M. & Jansen, V.A.A. (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of The Royal Society Interface, 7, 12471256.
  • Funk, S., Gilad, E., Watkins, C. & Jansen, V.A.A. (2009) The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 106, 68726877.
  • Godfrey, S.S., Bradley, J.K., Sih, A. & Bull, C.M. (2012) Lovers and fighters in sleepy lizard land: where do aggressive males fit in a social network?Animal Behaviour, 83, 209215.
  • Gross, T. & Blasius, B. (2008) Adaptive coevolutionary networks: a review. Journal of the Royal Society, Interface, 5, 259271.
  • Gross, T., D’Lima, C.J.D. & Blasius, B. (2006) Epidemic dynamics on an adaptive network. Physical Review Letters, 96, 208701.
  • Haddadi, H., King, A., Wills, A., Fay, D., Lowe, J., Morton, A., Hailes, S. & Wilson, A. (2011) Determining association networks in social animals: choosing spatial–temporal criteria and sampling rates. Behavioral Ecology and Sociobiology, 65, 16591668.
  • Hanneke, S. & Xing, E. (2009) Discrete Temporal Models of Social Networks. arXiv,stat.ML .
  • Heaton, L., López, E., Maini, P., Fricker, M. & Jones, N. (2010) Growth-induced mass flows in fungal networks. Proceedings of the Royal Society of London. Series B, 277, 32653274.
  • Henzi, S., Lusseau, D., Weingrill, T., van Schaik, C. & Barrett, L. (2009) Cyclicity in the structure of female baboon social networks. Behavioral Ecology and Sociobiology, 63, 10151021.
  • Holme, P. (2005) Network reachability of real-world contact sequences. Physical Review E, 71, 046119.
  • Holme, P. & Newman, M.E.J. (2006) Nonequilibrium phase transition in the coevolution of networks and opinions. Physical Review E, 74, 056108.
  • Holme, P. & Saramäki, J. (2011) Temporal networks. arXiv,1108.1780 .
  • Hoppitt, W., Boogert, N.J. & Laland, K.N. (2010) Detecting social transmission in networks. Journal of Theoretical Biology, 263, 544555.
  • Ifti, M., Killingback, T. & Doebeli, M. (2004) Effects of neighbourhood size and connectivity on spatial Continuous Prisoner’s Dilemma. Journal of Theoretical Biology, 231, 97106.
  • Ings, T.C., Montoya, J.M., Bascompte, J., Bluethgen, N., Brown, L., Dormann, C.F., Edwards, F., Figueroa, D., Jacob, U., Jones, J.I., Lauridsen, R.B., Ledger, M.E., Lewis, H.M., Olesen, J.M., van Veen, F.J.F., Warren, P.H. & Woodward, G. (2009) Ecological networks - beyond food webs. Journal of Animal Ecology, 78, 253269.
  • James, R., Croft, D.P. & Krause, J. (2009) Potential banana skins in animal social network analysis. Behavioral Ecology and Sociobiology, 63, 989997.
  • Jarre-Teichmann, A. & Pauly, D. (1993) Seasonal changes in the Peruvian upwelling ecosystem. Trophic models of aquatic ecosystems. ICLARM Conf. Proc. 26, 390 (eds V. Christensen & D. Pauly), pp. 307314. ICLARM, Makati, Metro Manila, Philippines.
  • Jeanson, R. (2012) Long-term dynamics in proximity networks in ants. Animal Behaviour, 83, 915923.
  • Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L. & Saramäki, J. (2010) Small but slow world: how network topology and burstiness slow down spreading. Physical Review E, 83, 025102(R).
  • Katifori, E., Szöllősi, G.J. & Magnasco, M.O. (2010) Damage and fluctuations induce loops in optimal transport networks. Physical Review Letters, 104, 048704.
  • Kauffman, S. & Johnsen, S. (1991) Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology, 149, 467505.
  • Kauffman, S., Peterson, C., Samuelsson, B. & Troein, C. (2003) Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences of the United States of America, 100, 1479614799.
  • Kempe, D., Kleinberg, J. & Kumar, A. (2002) Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64, 820842.
  • Kempe, D., Kleinberg, J. & Tardos, É. (2003) Maximizing the spread of influence through a social network. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , pp. 137146. ACM, New York, NY, USA.
  • Kendal, R., Custance, D., Kendal, J., Vale, G., Stoinski, T., Rakotomalala, N. & Rasamimanana, H. (2010) Evidence for social learning in wild lemurs (Lemur catta). Learning & Behavior, 38, 220234.
  • Kerth, G., Perony, N. & Schweitzer, F. (2011) Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proceedings of the Royal Society of London. Series B, 278, 27612767.
  • Kim, P. & Jeong, H. (2007) Reliability of rank order in sampled networks. European Physical Journal B: Condensed Matter and Complex Systems, 55, 109114.
  • Kossinets, G. (2006) Effects of missing data in social networks. Social Networks, 28, 247268.
  • Kossinets, G., Kleinberg, J. & Watts, D. (2008) The structure of information pathways in a social communication network. Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining , pp. 435443. ACM, New York, NY, USA.
  • Kostakos, V. (2009) Temporal graphs. Physica A: Statistical Mechanics and its Applications, 388, 10071023.
  • Kovanen, L., Karsai, M., Kaski, K., Kertész, J. & Saramäki, J. (2011) Temporal motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment, vol. P11005.
  • Kuhn, F. & Oshman, R. (2011) Dynamic networks: models and algorithms. SIGACT News, 42, 8296.
  • Kurant, M., Markopoulou, A. & Thiran, P. (2011) Towards Unbiased BFS Sampling. arXiv,cs, 1102.4599.
  • Lahiri, M. & Berger-Wolf, T. (2007) Structure prediction in temporal networks using frequent subgraphs. IEEE Symposium on Computational Intelligence and Data Mining , pp. 3542.
  • Lahiri, M. & Berger-Wolf, T. (2010) Periodic subgraph mining in dynamic networks. Knowledge and Information Systems, 24, 467497.
  • Lahiri, M., Arun, S., Habiba, R. & Wolf, T. (2008) The impact of structural changes on predictions of diffusion in networks. IEEE International Conference on Data Mining Workshops .
  • Leskovec, J., Kleinberg, J. & Faloutsos, C. (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , pp. 177187. ACM, New York, NY, USA.
  • Liben-Nowell, D. & Kleinberg, J. (2003) The link prediction problem for social networks. Proceedings of the twelfth international conference on Information and knowledge management pp. 556559. ACM, New York, NY, USA.
  • Lieberman, E., Hauert, C. & Nowak, M. (2005) Evolutionary dynamics on graphs. Nature, 433, 312316.
  • Liu, Y.-Y., Slotine, J.-J. & Barabasi, A.-L. (2011) Controllability of complex networks. Nature, 473, 167173.
  • Lü, L. & Zhou, T. (2011) Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and its Applications, 390, 11501170.
  • Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A. & Gerstein, M. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431, 308312.
  • Lusseau, D., Whitehead, H. & Gero, S. (2008) Incorporating uncertainty into the study of animal social networks. Animal Behaviour, 75, 18091815.
  • Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E. & Dawson, S.M. (2003) The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54, 396405.
  • Madden, J.R. & Clutton-Brock, T.H. (2009) Manipulating grooming by decreasing ectoparasite load causes unpredicted changes in antagonism. Proceedings of the Royal Society B: Biological Sciences, 276, 12631268.
  • Maiya, A.S. & Berger-Wolf, T.Y. (2011) Benefits of bias: towards better characterization of network sampling. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 105113. ACM, San Diego, CA, USA.
  • May, R. (2006) Network structure and the biology of populations. Trends in Ecology & Evolution, 21, 394399.
  • Moody, J. (2002) The Importance of Relationship Timing for Diffusion. Social Forces, 81, 2556.
  • Mucha, P.J., Richardson, T., Macon, K., Porter, M.A. & Onnela, J.-P. (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science, 328, 876878.
  • Naug, D. (2008) Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behavioral Ecology and Sociobiology, 62, 17191725.
  • Newman, M.E.J. (2010) Networks: an introduction. Oxford University Press, Oxford.
  • O’Dwyer, J.P. & Green, J.L. (2010) Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecology Letters, 13, 8795.
  • Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441, 502505.
  • Olff, H., Alonso, D., Berg, M.P., Eriksson, B.K., Loreau, M., Piersma, T. & Rooney, N. (2009) Parallel ecological networks in ecosystems. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364, 17551779.
  • Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J. & Barabasi, A.-L. (2007) Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 73327336.
  • Onnela, J.-P., Arbesman, S., Barabási, A.-L. & Christakis, N.A. (2010) Geographic constraints on social network groups. PLoS ONE, 6, e16939.
  • Otterstatter, M.C. & Thomson, J.D. (2007) Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia, 154, 411421.
  • Petanidou, T., Kallimanis, A.S., Tzanopoulos, J., Sgardelis, S.P. & Pantis, J.D. (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters, 11, 564575.
  • Pinar, A., Seshadhri, C. & Kolda, T.G. (2011) The Similarity between Stochastic Kronecker and Chung-Lu Graph Models. arXiv,cs, 1110.4925.
  • Pinter-Wollman, N., Wollman, R., Guetz, A., Holmes, S. & Gordon, D.M. (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. Journal of The Royal Society Interface, 8, 15621573.
  • Prakash, B.A., Chakrabarti, D., Faloutsos, M., Valler, N. & Faloutsos, C. (2011) Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks. ICDM (eds D.J. Cook, J. Pei, W. Wang, O.R. Zaïane & X. Wu), pp. 537546. Proceedings of the 2011 IEEE 11th International Conference on Data. IEEE Computer Society, Washington DC, USA.
  • Proulx, S., Promislow, D. & Phillips, P. (2005) Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20, 345353.
  • Rand, D., Arbesman, S. & Christakis, N. (2011) Dynamic social networks promote cooperation in experiments with humans. Proceedings of the National Academy of Sciences of the United States of America, 108, 1919319198.
  • Robins, G., Snijders, T., Wang, P., Handcock, M. & Pattison, P. (2007) Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29, 192215.
  • Romano, C.M., Guedes de Carvalho-Mello, I.M.V., Jamal, L.F., de Melo, F.L., Iamarino, A., Motoki, M., Rebello Pinho, J.R., Holmes, E.C. & de Andrade Zanotto, P.M. (2010) Social networks shape the transmission dynamics of hepatitis C virus. PLoS ONE, 5, e11170.
  • Romanuk, T., Zhou, Y., Brose, U., Berlow, E., Williams, R. & Martinez, N. (2009) Predicting invasion success in complex ecological networks. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364, 17431754.
  • Rothenberg, R., Potterat, J., Woodhouse, D., Muth, S., Darrow, W. & Klovdahl, A. (1998) Social network dynamics and HIV transmission. Aids, 12, 15291536.
  • Sahasrabudhe, S. & Motter, A.E. (2011) Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Communications, 2, 170.
  • Salathé, M. & Jones, J. (2010) Dynamics and control of diseases in networks with community structure. PLoS Computational Biology, 6, e1000736.
  • Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A. & Amblard, F. (2011) Time-varying graphs and social network analysis: temporal indicators and metrics. arXiv, 1102.0629v1101.
  • Scanlon, T., Caylor, K., Levin, S. & Rodriguez-Iturbe, I. (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature, 449, 209212.
  • Sendova-Franks, A.B., Hayward, R.K., Wulf, B., Klimek, T., James, R., Planque, R., Britton, N.F. & Franks, N.R. (2009) Emergency networking: famine relief in ant colonies. Animal Behaviour, 79, 473485.
  • Seshadhri, C., Pinar, A. & Kolda, T.G. (2011) An In-Depth Analysis of Stochastic Kronecker Graphs. arXiv,cs, 1102.5046.
  • Seth, A. & Edelman, G. (2007) Distinguishing causal interactions in neural populations. Neural Computation, 19, 910933.
  • Shannon, C. (1949) Communication in the presence of noise. Proceedings of the IRE, 37, 1021.
  • Shaw, L.B. & Schwartz, I.B. (2008) Fluctuating epidemics on adaptive networks. Physical Review E, 77, 066101.
  • Sih, A., Hanser, S.F. & Mchugh, K.A. (2009) Social network theory: new insights and issues for behavioral ecologists. Behavioral Ecology and Sociobiology, 63, 975988.
  • de Silva, E., Thorne, T., Ingram, P., Agrafioti, I., Swire, J., Wiuf, C. & Stumpf, M.P.H. (2006) The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biology, 4.
  • Snijders, T.A.B., Koskinen, J. & Schweinberger, M. (2010) Maximum likelihood estimation for social network dynamics. Annals of Applied Statistics, 4, 567588.
  • Snijders, T., Van de Bunt, G. & Steglich, C. (2010) Introduction to stochastic actor-based models for network dynamics. Social Networks, 32, 4460.
  • Staniczenko, P., Lewis, O., Jones, N. & Reed-Tsochas, F. (2010) Structural dynamics and robustness of food webs. Ecology Letters, 13, 891899.
  • Stumpf, M., Wiuf, C. & May, R. (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 42214224.
  • Sulo, R., Tanya, B.-W. & Robert, G. (2011) Temporal Scale of Processes in Dynamic Networks. IEEE ICDM 2011 Workshop on Data Mining in Networks, pp. 925932. Vancouver, Canada.
  • Szolnoki, A. & Perc, M. (2009) Resolving social dilemmas on evolving random networks. Epl-Europhysics Letters, 86, 30007.
  • Tang, J., Musolesi, M., Mascolo, C. & Latora, V. (2010) Characterising temporal distance and reachability in mobile and online social networks. Computer Communication Review, 40, 118124.
  • Tantipathananandh, C., Berger-Wolf, T. & Kempe, D. (2007) A framework for community identification in dynamic social networks. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , pp. 717726. ACM, New York, NY, USA.
  • Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R. & Nakagaki, T. (2010) Rules for biologically inspired adaptive network design. Science, 327, 439442.
  • Thebault, E. & Fontaine, C. (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853856.
  • Uchida, S. & Drossel, B. (2007) Relation between complexity and stability in food webs with adaptive behavior. Journal of Theoretical Biology, 247, 713722.
  • Urban, D. & Keitt, T. (2001) Landscape connectivity: a graph-theoretic perspective. Ecology, 82, 12051218.
  • Valdovinos, F.S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J.A. (2010) Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 13, 15461559.
  • Volz, E. & Meyers, L.A. (2007) Susceptible-infected-recovered epidemics in dynamic contact networks. Proceedings of the Royal Society of London. Series B, 274, 29252933.
  • Volz, E. & Meyers, L.A. (2009) Epidemic thresholds in dynamic contact networks. Journal of The Royal Society Interface, 6, 233241.
  • Wackersreuther, B., Wackersreuther, P., Oswald, A., Böhm, C. & Borgwardt, K.M. (2010) Frequent subgraph discovery in dynamic networks. Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pp. 155162. ACM, Washington, DC.
  • Walters, C., Christensen, V. & Pauly, D. (1997) Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries, 7, 139172.
  • Wey, T., Blumstein, D., Shen, W. & Jordán, F. (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Animal Behaviour, 75, 333344.
  • Whitehead, H. (1997) Analysing animal social structure. Animal Behaviour, 53, 10531067.
  • Whitehead, H. (2009) SOCPROG programs: analysing animal social structures. Behavioral Ecology and Sociobiology, 63, 765778.
  • Williams, R.J. & Martinez, N.D. (2000) Simple rules yield complex food webs. Nature, 404, 180183.
  • Wolfram, S. (2002) A new kind of science. Wolfram Media, Champaign, IL, USA.
  • Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G., Maini, P.K. & Sumpter, D.J.T. (2009) Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106, 54645469.
  • Yeung, K., Dombek, K., Lo, K., Mittler, J., Zhu, J., Schadt, E., Bumgarner, R. & Raftery, A. (2011) Construction of regulatory networks using expression time-series data of a genotyped population. Proceedings of the National Academy of Sciences of the United States of America, 108, 1943619441.
  • Zecevic, A. & Siljak, D.D. (2010) Future directions: dynamic graphs. Control of Complex Systems, pp. 165212. Springer, USA.