SEARCH

SEARCH BY CITATION

References

  • Arah, O. (2008) The role of causal reasoning in understanding Simpson's paradox, Lord's paradox, and the suppression effect: covariate selection in the analysis of observational studies. Emerging Themes in Epidemiology, 5, 5.
  • Bevan, R.M., Butler, P.J., Woakes, A.J. & Prince, P.A. (1995) The energy expenditure of free-ranging black-browed albatrosses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 350, 119131.
  • Blyth, C.R. (1972) On Simpson's paradox and the sure-thing principle. Journal of the American Statistical Association, 67, 364.
  • Box, G.E. (1966) Use and abuse of regression. Technometrics, 8, 625629.
  • Bradshaw, C.J.A., Sims, D.W. & Hays, G.C. (2007) Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data. Ecological Applications, 17, 628638.
  • Burnham, K. & Anderson, D. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, New York, USA.
  • Cagnacci, F., Boitani, L., Powell, R.A. & Boyce, M.S. (2010a) Animal ecology meets gps-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of The Royal Society B-Biological Sciences, 365, 21572162.
  • Cagnacci, F., Boitani, L., Powell, R.A. & Boyce, M.S. (2010b) Theme issue ’challenges and opportunities of using gps-based location data in animal ecology’. Philosophical Transactions of The Royal Society B-Biological Sciences, 365, 21552155.
  • Carroll, R., Ruppert, D., Stefanski, L. & Crainiceanu, C. (2006) Measurement Error in Nonlinear Models: A Modern Perspective. Monographs on statistics and applied probability, Chapman & Hall/CRC, New York, New York, USA.
  • Diggle, P., Heagerty, P., Liang, K.Y. & Zeger, S. (2002) Analysis of Longitudinal Data, 2nd edn. Oxford University Press, Oxford.
  • Dominici, F., Samet, J. & Zeger, S. (2000) Combining evidence on air pollution and daily mortality from the 20 largest us cities: a hierarchical modelling strategy. Journal of the Royal Statistical Society: Series A (Statistics in Society), 163, 263302.
  • Fieberg, J.R., Shertzer, K.W., Conn, P.B., Noyce, K.V. & Garshelis, D.L. (2010) Integrated population modeling of black bears in Minnesota: implications for monitoring and management. PLoS One, 5, e12114, doi: http://dx.doi.org/10.1371%2Fjournal.pone.0012114.
  • Freedman, D. & Humphreys, P. (1999) Are there algorithms that discover causal structure? Synthese, 121, 2954.
  • Gaillard, J.M., Hebblewhite, M., Loison, A., Fuller, M., Powell, R., Basille, M. & Van Moorter, B. (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Philosophical Transactions of The Royal Society B-Biological Sciences, 365, 22552265.
  • Garshelis, D.L., Noyce, K.V. & Ditmer, M.A. (2011) Ecology and population dynamics of black bears in Minnesota. Summaries of Wildlife Research Findings (eds G.D. DelGiudice, M. Grund, J.S. Lawrence & M.S. Lenarz), pp. 103114. Minnesota Department of Natural Resources, St. Paul, Minnesota, USA.
  • Giudice, J.H., Fieberg, J.R. & Lenarz, M.S. (2012) Spending degrees of freedom in a poor economy: a case study of building a sightability model for moose in northeastern Minnesota. The Journal of Wildlife Management, 76, 7587.
  • Hernán, M.A. & Cole, S.R. (2009) Invited commentary: causal diagrams and measurement bias. American Journal of Epidemiology, 170, 959962.
  • Hernán, M.A., Hernández-D'iaz, S., Werler, M.M. & Mitchell, A.A. (2002) Causal knowledge as a prerequisite for confounding evaluation: and application to birth defects epidemiology. American Journal of Epidemiology, 155, 176184.
  • Hernán, M.A., Clayton, D. & Keiding, N. (2011) The Simpson's paradox unraveled. International Journal of Epidemiology, 40, 780785.
  • Hodges, J.S. & Reich, B.J. (2010) Adding spatially-correlated errors can mess up the fixed effect you love. The American Statistician, 64, 325334.
  • Jerde, C.L. & Visscher, D.R. (2002) GPS measurement error influences on movement model parameterization. Ecological Applications, 15, 806810.
  • Kapfer, P.M. & Potts, K.B. (2012) Socioeconomic and ecological correlates of bobcat harvest in Minnesota. The Journal of Wildlife Management, 76, 237242.
  • Laske, T., Garshelis, D. & Iaizzo, P. (2011) Monitoring the wild black bear's reaction to human and environmental stressors. BMC Physiology, 11, 13.
  • Lumley, T. & Heagerty, P. (1999) Weighted empirical adaptive variance estimators for correlated data regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 459477.
  • Marchetti, G.M., Drton, M. & Sadeghi, K. (2012) ggm: A package for Graphical Markov Models. R package version 1.99-2, URL http://CRAN.R-project.org/package-ggm
  • McNamee, R. (2003) Confounding and confounders. Occupational and Environmental Medicine, 60, 227234.
  • Paciorek, C.J. (2010) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Statistical Science, 25, 107125.
  • Paul, W.L. (2011) A causal modelling approach to spatial and temporal confounding in environmental impact studies. Environmetrics, 22, 626638.
  • Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82, 669688.
  • Pearl, J. (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, New York, USA.
  • Pepe, M.S. & Anderson, G.L. (1994) A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics – Simulation and Computation, 23, 939951.
  • R Development Core Team (2010) R: A Language and Environment for Statistical Computing, Version 2.12.0. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/. ISBN 3-900051-07-0.
  • Reich, B.J., Hodges, J.S. & Zadnik, V. (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics, 62, 11971206.
  • Robins, J.M. & Hernán, M.A. (2009) Estimation of the causal effects of time-varying exposures. Longitudinal Data Analysis (eds G. Fitzmaurice, M. Davidian, G. Verbeke & G. Molenberghs), pp. 553599. Chapman & Hall-CRC Handbooks of Modern Statistical Methods. Crc Press-Taylor & Francis Group, Boca Raton, Florida, USA.
  • Rowcliffe, J.M., Carbone, C., Kays, R., Kranstauber, B. & Jansen, P.A. (2012) Bias in estimating animal travel distance: the effect of sampling frequency. Methods in Ecology and Evolution, 3, 653662.
  • Schildcrout, J.S., Haneuse, S., Peterson, J.F., Denny, J.C., Matheny, M.E., Waitman, L.R. & Miller, R.A. (2011) Analyses of longitudinal, hospital clinical laboratory data with application to blood glucose concentrations. Statistics in Medicine, 30, 32083220.
  • Shipley, B. (2002) Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference. Cambridge University Press, Cambridge.
  • Signer, C., Ruf, T., Schober, F., Fluch, G., Paumann, T. & Arnold, W. (2010) A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free-ranging ruminants. Methods in Ecology and Evolution, 1, 7585.
  • Theil, P.K., Coutant, A.E. & Olesen, C.R. (2004) Seasonal changes and activity-dependent variation in heart rate of roe deer. Journal of Mammalogy, 85, 245253.
  • Tomkiewicz, S.M., Fuller, M.R., Kie, J.G. & Bates, K.K. (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of The Royal Society B-Biological Sciences, 365, 21632176.
  • Zeileis, A. (2004) Econometric computing with hc and hac covariance matrix estimators. Journal of Statistical Software, 11, 117.
  • Zub, K., Szafraska, P., Konarzewski, M., Redman, P. & Speakman, J. (2009) Trade-offs between activity and thermoregulation in a small carnivore, the least weasel Mustela nivalis. Proceedings of the Royal Society B: Biological Sciences, 276, 19211927.
  • Zucchini, W., Raubenheimer, D. & MacDonald, I.L. (2008) Modeling time series of animal behavior by means of a latent-state model with feedback. Biometrics, 64, 807815.