SEARCH

SEARCH BY CITATION

References

  • Aiken, L.S. & West, S.G. (1991) Multiple Regression: Testing and Interpreting Interactions. Sage Publications, Newbury Park, California.
  • Algina, J. & Swaminathan, H. (2011) Centering in two-level nested designs. Handbook of Advanced Multilevel Analysis (eds J.J. Hox & J.K. Roberts), pp. 285312. Routledge, New York, New York.
  • Bennington, C.C. & Thayne, W.V. (1994) Use and misuse of mixed-model analysis of variance in ecological studies. Ecology, 75, 717722.
  • Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.-S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127135.
  • Browne, W.J., Goldstein, H. & Rasbash, J. (2001) Multiple membership multiple classification (MMMC) models. Statistical Modelling, 1, 103124.
  • Cleasby, I.R. & Nakagawa, S. (2011) Neglected biological patterns in the residuals: a behavioural ecologist's guide to co-operating with heteroscedasticity. Behavioral Ecology and Sociobiology, 65, 23612372.
  • Comstock, R.E. & Robinson, H.F. (1952) Estimation of average dominance of genes. Heterosis (ed. J.W. Gowen), pp. 494516. Iowa State College Press, Ames, Iowa.
  • Congdon, P. (2007) Bayesian Statistical Modelling, 2nd edn. Wiley, Chichester.
  • Diaz-Uriarte, R. (2002) Incorrect analysis of crossover trials in animal behaviour research. Animal Behaviour, 63, 815822.
  • Dingemanse, N.J., Kazem, A.J., Reale, D. & Wright, J. (2009) Behavioural reaction norms: animal personality meets individual plasticity. Trends in Ecology & Evolution, 25, 8189.
  • Engqvist, L. (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour, 70, 967971.
  • Falconer, D.S. & Mackay, T.F.C. (1996) Introduction to Quantitative Genetics, 4th edn. Prentice Hall, Harlow, UK.
  • Faraway, J.J. (2006) Extending the Linear Model with R. Chapman & Hall/CRC, Boca Raton, Florida.
  • Forstmeier, W. & Schielzeth, H. (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse. Behavioral Ecology and Sociobiology, 65, 4755.
  • Gelman, A. (2005) Analysis of variance: why it is more important than ever. Annals of Statistics, 33, 131.
  • Gelman, A. & Hill, J. (2007) Data analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, UK.
  • Goldstein, H. (2011) Multilevel Statistical Models, 4th edn. Wiley, Oxford.
  • Hadfield, J.D. (2010) MCMC methods for multi-response Generalized Linear Mixed Models: the MCMCglmm R package. Journal of Statistical Software, 33, 122.
  • Hadfield, J.D. & Nakagawa, S. (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494508.
  • Hinkelmann, K. & Kempthorne, O. (2008) Design and Analysis of Experiments. Volume 1: Introduction to Experimental Design, 2nd edn. Wiley-Blackwell, Chichester, UK.
  • Ives, A.R. & Zhu, J. (2006) Statistics for correlated data: phylogenies, space, and time. Ecological Applications, 16, 2032.
  • Kéry, M. (2010) Introduction to WinBUGS for Ecologists: A Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses. Academic Press, Amsterdam.
  • Kirk, R.E. (2009) Experimental design. The SAGE Handbook of Quantitative Methods in Psychology (eds R.E. Millsap & A. Maydeu-Olivares), pp. 2345. Sage Publications, London.
  • Kruuk, L.E.B. (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359, 873890.
  • Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates Inc., Sunderland, Massachusetts.
  • Martin, J.G.A., Nussey, D.H., Wilson, A.J. & Réale, D. (2011) Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods in Ecology and Evolution, 2, 362374.
  • McCulloch, C.E. & Neuhaus, J.M. (2005) Generalized Linear Mixed Models. John Wiley & Sons, Chichester.
  • Merlo, J., Chaix, B., Yang, M., Lynch, J. & Rastam, L. (2005a) A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. Journal of Epidemiology and Community Health, 59, 443449.
  • Merlo, J., Chaix, B., Yang, M., Lynch, J. & Rastam, L. (2005b) A brief conceptual tutorial on multilevel analysis in social epidemiology: interpreting neighbourhood differences and the effect of neighbourhood characteristics on individual health. Journal of Epidemiology and Community Health, 59, 10221028.
  • Merlo, J., Yang, M., Chaix, B., Lynch, J. & Rastam, L. (2005c) A brief conceptual tutorial on multilevel analysis in social epidemiology: investigating contextual phenomena in different groups of people. Journal of Epidemiology and Community Health, 59, 729736.
  • Merlo, J., Chaix, B., Ohlsson, H., Beckman, A., Johnell, K., Hjerpe, P., Rastam, L. & Larsen, K. (2006) A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology and Community Health, 60, 290297.
  • Mousseau, T.A. & Fox, C.W. (1998) Maternal Effects as Adaptations. Oxford University Press, Oxford.
  • Nakagawa, S. & Schielzeth, H. (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews, 85, 935956.
  • Pinheiro, J.C. & Bates, D. (2000) Mixed-Effects Models in S and S-PLUS. Springer, New York.
  • van de Pol, M.V. & Wright, J. (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753758.
  • Quinn, G.P. & Keough, M.J. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.
  • Rasch, D., Pilz, J., Verdooren, L.R. & Gebhardt, A. (2011) Optimal Experimental Design with R. CRC Press, Boca Raton, Florida.
  • Ryan, T.P. (2007) Modern Experimental Design. John Wiley & Sons, Chichester.
  • Scheiner, S.M. & Gurevitch, J. (2001) Design and Analysis of Ecological Experiments, 2nd edn. Oxford University Press, Oxford.
  • Schielzeth, H. & Forstmeier, W. (2009) Conclusions beyond support: overconfident estimates in mixed models. Behavioral Ecology, 20, 416420.
  • Singer, J.D. & Willett, J.B. (2003) Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, Oxford, UK.
  • Snijders, T. & Bosker, R. (2011) Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, 2nd edn. Sage, London.
  • Steinmeyer, C., Schielzeth, H., Müller, J.C. & Kempenaers, B. (2010) Variation in sleep behaviour in free-living blue tits Cyanistes caeruleus: effects of sex, age and environment. Animal Behaviour, 80, 853864.
  • Underwood, A.J. (1997) Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.
  • Valcu, M. & Kempenaers, B. (2010) Spatial autocorrelation: an overlooked concept in behavioral ecology. Behavioral Ecology, 21, 902905.
  • Verbeke, G. & Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. Springer, New York, New York.
  • Via, S. & Lande, R. (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution, 39, 505522.
  • Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 314.
  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, London.