SEARCH

SEARCH BY CITATION

References

  • Ameln, H., Gustafsson, T., Sundberg, C.J., Okamoto, K., Jansson, E., Poellinger, L. and Makino, Y. (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J. 19, 1009-11.
  • Booth, F.W. and Baldwin, K.M. (1996) Muscle plasticity: energy demanding and supply processes. In: Handbook of Physiology, Eds: L.BRowell and J.T.Shepherd, Oxford University Press, New York. pp 1075-1123.
  • Dingboom, E.G., Dijkstra, G., Enzerink, E., Van Oudheusden, H.C. and Weijs, W.A. (1999) Postnatal muscle fibre composition of the gluteus medius muscle of Dutch Warmblood foals; maturation and the influence of exercise. Equine vet. J. Suppl. 31, 95-100.
  • Eivers, S.S., McGivney, B.A., Fonseca, R.G., Machugh, D.E., Menson, K., Park, S.D., Rivero, J.L., Taylor, C.T., Katz, L.M. and Hill, E.W. (2009a) Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics. 2010 Jan 8; 40(2):83-93.
  • Eivers, S.S., McGivney, B.A., Fonseca, R.G., MacHugh, D.E., Menson, K., Park, S.D., Rivero, J.L., Taylor, C.T., Katz, L.M. and Hill, E.W. (2009b) Exercise-Induced Skeletal Muscle Gene Expression in Unconditioned and Conditioned Thoroughbred Horses and Associations with Physiological Variables, University College Dublin, Dublin.
  • Fluck, M. and Hoppeler, H. (2003) Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 146, 159-216.
  • Fukuda, R., Zhang, H., Kim, J.W., Shimoda, L., Dang, C.V. and Semenza, G.L. (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122.
  • Gu, J., MacHugh, D.E., McGivney, B.A., Park, S.D., Katz, L.M. and Hill, E.W. (2010) Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine vet. J., Suppl. 42, 569-575.
  • Hill, E.W., Gu, J., McGivney, B.A. and MacHugh, D.E. (2010) Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance. Anim. Genet. (in press).
  • Hinchcliff, K.W., Lauderdale, M.A., Dutson, J., Geor, R.J., Lacombe, V.A. and Taylor, L.E. (2002) High intensity exercise conditioning increases accumulated oxygen deficit of horses. Equine vet. J. 34, 9-16.
  • Holloszy, J.O. and Coyle, E.F. (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. appl. Physiol. 56, 831-838.
  • Hood, D.A. (2001) Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. appl. Physiol. 90, 1137-1157.
  • Hoppeler, H., Howald, H., Conley, K., Lindstedt, S.L., Claassen, H., Vock, P. and Weibel, E.R. (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J. appl. Physiol. 59, 320-327.
  • Katz, L.M., Bayly, W.M., Hines, M.T. and Sides, R.H. (1999) Differences in the ventilatory responses of horses and ponies to exercise of varying intensities. Equine vet. J., Suppl. 30, 49-51.
  • Klossner, S., Dapp, C., Schmutz, S., Vogt, M., Hoppeler, H. and Fluck, M. (2007) Muscle transcriptome adaptations with mild eccentric ergometer exercise. Pflugers Arch. 455, 555-562.
  • Lindholm, A. and Piehl, K. (1974) Fibre composition, enzyme activity and concentrations of metabolites and electrolytes in muscles of standardbred horses. Acta vet. Scand. 15, 287-309.
  • Louis, E., Raue, U., Yang, Y., Jemiolo, B. and Trappe, S. (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J. appl. Physiol. 103, 1744-1751.
  • Mahoney, D.J., Parise, G., Melov, S., Safdar, A. and Tarnopolsky, M.A. (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 19, 1498-1500.
  • McGivney, B.A., Eivers, S.S., Machugh, D.E., Macleod, J.N., O'Gorman, G.M., Park, S.D., Katz, L.M. and Hill, E.W. (2009) Transcriptional modifications following exercise in Thoroughbred horse skeletal muscle highlight molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 10, 638.
  • McGivney, B.A., McGettigan, P.A., Browne, J.A., Evans, A.C., Fonseca, R.G., Lohan, A.J., Loftus, B.J., MacHugh, D.E., Murphy, B.A., Katz, L.M. and Hill, E.W. (2010) Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11, 398.
  • McGowan, C.M., Golland, L.C., Evans, D.L., Hodgson, D.R. and Rose, R.J. (2002) Effects of prolonged training, overtraining and detraining on skeletal muscle metabolites and enzymes. Equine vet. J., Suppl. 34, 257-263.
  • Neufer, P.D., Ordway, G.A., Hand, G.A., Shelton, J.M., Richardson, J.A., Benjamin, I.J. and Williams, R.S. (1996) Continuous contractile activity induces fiber type specific expression of HSP70 in skeletal muscle. Am. J. Physiol. 271, C1828-C1837.
  • O'Gorman, G.M., Park, S.D., Hill, E.W., Meade, K.G., Mitchell, L.C., Agaba, M., Gibson, J.P., Hanotte, O., Naessens, J., Kemp, S.J. and MacHugh, D.E. (2006) Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense. Physiol. Genomics 28, 53-61.
  • Rivero, J.L., Ruz, A., Marti-Korfft, S. and Lindner, A. (2006) Contribution of exercise intensity and duration to training-linked myosin transitions in thoroughbreds. Equine vet. J., Suppl. 36, 311-315.
  • Roneus, M. (1993) Muscle characteristics in standardbreds of different ages and sexes. Equine vet. J. 25, 143-146.
  • Roneus, M., Essen-Gustavsson, B., Lindholm, A. and Persson, S.G. (1992) Skeletal muscle characteristics in young trained and untrained standardbred trotters. Equine vet. J. 24, 292-294.
  • Rose, R.J., Hendrickson, D.K. and Knight, P.K. (1990) Clinical exercise testing in the normal thoroughbred racehorse. Aust. vet. J. 67, 345-348.
  • Serrano, A.L., Quiroz-Rothe, E. and Rivero, J.L. (2000) Early and long-term changes of equine skeletal muscle in response to endurance training and detraining. Pflugers Arch. 441, 263-274.
  • Tesch, P.A., Colliander, E.B. and Kaiser, P. (1986) Muscle metabolism during intense, heavy-resistance exercise. Eur. J. appl. Physiol. Occup. Physiol. 55, 362-366.
  • Vock, R., Hoppeler, H., Claassen, H., Wu, D.X., Billeter, R., Weber, J.M., Taylor, C.R. and Weibel, E.R. (1996) Design of the oxygen and substrate pathways. VI. structural basis of intracellular substrate supply to mitochondria in muscle cells. J. expt. Biol. 199, 1689-1697.