SEARCH

SEARCH BY CITATION

References

  • Basawa, I. V. (1985). Neyman-Le Cam tests based on estimation functions. In L. M. Le Cam and R. A. Ohlson (Eds.), Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Volume II (pp. 811825). Monterey , CA : Wadsworth.
  • Basawa, I. V. (1991). Generalized score tests for composite hypotheses. In V. P. Godambe (Ed.), Estimating functions (pp. 121131). Oxford : Oxford University Press.
  • Bera, A. K., & Bilias, Y. (2001a). On some optimality properties of Fisher-Rao score function in testing and estimation. Communications in Statistics – Theory and Methods, 30, 15331559. doi:10.1081/STA-100105683
  • Bera, A. K., & Bilias, Y. (2001b). Rao’s score, Neyman’s C(α) and Silvey’s LM tests: an essay on historical developments and some new results. Journal of Statistical Planning and Inference, 97, 944. doi:10.1016/S0378-3758(00)00343-8
  • Efron, B. (1977). Discussion on the paper by Professor Dempster et al. Journal of the Royal Statistical Society, Series B, 39, 29.
  • Faust, K. (2007). Very local structure in social networks. Sociological Methodology, 37, 209256. doi:10.1111/j.1467-9531.2007.00179.x
  • Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700725.
  • Freeman, L. C. (2004). The Development of Social Network Analysis: A Study in the Sociology of Science. Vancouver : Empirical Press.
  • Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 12081211.
  • Godambe, V. P. (1991). Estimating functions. Oxford : Oxford University Press.
  • Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo methods. London : Methuen.
  • Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks. Journal of Mathematical Sociology, 5, 520.
  • Koskinen, J. H., & Snijders, T. A. B. (2007). Bayesian inference for dynamic social network data. Journal of Statistical Planning and Inference, 137, 39303938. doi:10.1016/j.jspi.2007.04.011
  • Lehmann, E. L., & Romano, J. P. (2005). Testing statistical hypotheses (3rd ed.). New York : Springer.
  • Lospinoso, J., Schweinberger, M., Snijders, T., & Ripley, R. (2011). Assessing and accounting for time heterogeneity in stochastic actor oriented models. Advances in Data Analysis and Classification, 5(2), 147176. doi:10.1007/s11634-010-0076-1
  • Magnus, J. R., & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. New York : Wiley.
  • Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. In U. Grenander (Ed.), Probability and Statistics. The Harald Cramér Volume (pp. 213234). Stockholm/New York: Almquist & Wiksell/Wiley.
  • Norris, J. R. (1997). Markov Chains. Cambridge : Cambridge University Press.
  • Pahor, M. (2003). Causes and consequences of companies’ activity in ownership network. Ph.D. thesis, Faculty of Economics, University of Ljubljana, Slovenia .
  • Pahor, M., Prasnikar, J., & Ferligoj, A. (2004). Building a corporate network in a transition economy: the case of Slovenia. Post-Communist Economics, 16, 307331. doi:10.1080/1463137042000257546
  • Pearson, K. (1900). On the criterion that a given system of observations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50, 157175.
  • Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proceedings of the Cambridge Philosophical Society, 44, 5057.
  • Rao, C. R. (2002). Karl Pearson chi-square test. The dawn of statistical inference. In C. Huber-Carol, N. Balakrishnan, M. S. Nikulin, & M. Mesbah (Eds.), Goodness-of-fit tests and model validity (pp. 924). Boston : Birkhäuser.
  • Resnick, S. I. (2002). Adventures in stochastic processes. Boston : Birkhäuser.
  • Ripley, R. M., Snijders, T. A. B., & Lopez, P. P. (2011). Manual for RSiena.
  • Schweinberger, M., & Snijders, T. A. B. (2007). Markov models for digraph panel data: Monte Carlo-based derivative estimation. Computational Statistics & Data Analysis, 51, 44654483. doi:10.1016/j.csda.2006.07.014
  • Snijders, T. A. B. (1996). Stochastic actor-oriented dynamic network analysis. Journal of Mathematical Sociology, 21, 149172. doi:10.1080/0022250X.1996.9990178
  • Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. In M. Sobel and M. Becker (Eds.), Sociological methodology (pp. 361395). Boston and London: Basil Blackwell. doi:10.1111/0081-1750.00099
  • Snijders, T. A. B. (2003). Accounting for degree distributions in empirical analysis of network dynamics. In R. Breiger, K. Carley, & P. Pattison (Eds.), Dynamic social network modeling and analysis: Workshop summary and papers (pp. 146161). Washington , DC : National Academies Press.
  • Snijders, T. A. B. (2006). Statistical methods for network dynamics. In Proceedings of XLIII Scientific Meeting, Italian Statistical Society, pp. 281296. Padua : CLEUP.
  • Snijders, T. A. B. (2009). Longitudinal methods of network analysis. In B. Meyers (Ed.), Encyclopedia of complexity and system science (pp. 59986013). New York : Springer.
  • Snijders, T. A. B., Koskinen, J., & Schweinberger, M. (2010). Maximum likelihood estimation for social network dynamics. Annals of Applied Statistics, 4, 567588. doi:10.1214/09-AOAS313
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge : Cambridge University Press.