• Agresti, A. (2002). Categorical Data Analysis. New York : Wiley.
  • Atkins, D., & Gallop, R. (2007). Rethinking how family researchers model infrequent outcomes: A tutorial on count regression and zero-inflated models. Journal of Family Psychology, 21(4), 726735.
  • Bohning, D., Dietz, E., Schlattmann, P., Mendonca, L., & Kirchner, U. (1999). The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society Series A, 162, 195209.
  • Cameron, A. C., & Trivedi, P. K. (1998). Regression analysis of count data. Cambridge : Cambridge University Press.
  • Cupach, W. R., & Spitzberg, B. H. (2004). The dark side of relationship pursuit. From attraction to obsession and stalking. Mahwah , NJ : Lawrence Erlbaum Associates.
  • Dalrymple, M. L., Hudson, I. L., & Ford, R. P. K. (2003). Finite mixture, zero-inflated Poisson and hurdle models with application to SIDS. Computational Statistics & Data Analysis, 41, 491504.
  • De Smet, O., Buysse, A., & Brondeel, R. (2011). Effect of the breakup context on unwanted pursuit behavior perpetration between former partners. Journal of Forensic Sciences, 56(4), 934941.
  • Hilbe, J. (2011). Negative binomial regression. Cambridge : Cambridge University Press.
  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346363.
  • Karazsia, B. T., & van Dulmen, M. (2008). Regression models for count data: Illustrations using longitudinal predictors of childhood injury. Journal of Pediatric Psychology, 33, 10741084.
  • Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 117.
  • Lewis, M. A., Clayton, N., Geisner, I. M., Lee, C. M., Kilmer, J. R., & Atkins, D. (2010). Examining the associations among severity of injunctive drinking, norms, alcohol consumption and alcohol-related negative consequences: The moderating roles of alcohol consumption and identity. Psychology of Addictive Behaviors, 24(2), 177189.
  • Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of Econometrics, 33, 341365.
  • Ravert, R. D., Schwartz, S., Zamboanga, B. L., Kim, S. Y., Weisskirch, R. S. & Bersamin, M. (2009). Sensation seeking and danger invulnerability: Paths to college student risk-taking. Personality and Individual Differences, 47, 763768.
  • R Development Core Team (2011). R: A language and environment for statistical computing. Vienna : R Foundation for Statistical Computing.
  • Rose, C. E., Martin, S. W., Wannemuehler, K. A., & Plikaytis, B. D. (2006). On the use of zero-inflated and hurdle models for modelling vaccine adverse event count data. Journal of Biopharmaceutical Statistics, 16, 463481.
  • Tse, S. K., Chow, S. C., Lu, Q., & Cosmatos, D. (2009) Testing homogeneity of two zero-inflated Poisson populations. Biometrical Journal, 1, 159170.
  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York : Springer.
  • Vives, J., Losilla, J. M., & Rodrigo, M. F. (2006). Count data in psychological applied research. Psychological Reports, 98(3), 821835.
  • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307333.
  • Wei, M., Russell, D. W., Mallinckrodt, B., & Vogel, D. L. (2007). The experiences in close relationship scale (ECR)-short form: Reliability, validity, and factor structure. Journal of Personality Assessment, 88, 187204.
  • Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 125.