SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    M. B. Hooten, N. T. Hobbs, A guide to Bayesian model selection for ecologists, Ecological Monographs, 2015, 85, 1, 3

    CrossRef

  2. 2
    Christopher J. Hutton, Zoran Kapelan, A probabilistic methodology for quantifying, diagnosing and reducing model structural and predictive errors in short term water demand forecasting, Environmental Modelling & Software, 2015, 66, 87

    CrossRef

  3. 3
    Panayotis Giannakouros, Lihua Chen, A problem-solving approach to data analysis for economics, Forum for Social Economics, 2015, 1

    CrossRef

  4. 4
    J. M. Reed, C. R. Field, M. D. Silbernagle, A. Nadig, K. Goebel, A. Dibben-Young, P. Donaldson, C. S. Elphick, Application of the complete-data likelihood to estimate juvenile and adult survival for the endangered Hawaiian stilt, Animal Conservation, 2015, 18, 2
  5. 5
    D. Robert Ladd, Seán G. Roberts, Dan Dediu, Correlational Studies in Typological and Historical Linguistics, Annual Review of Linguistics, 2015, 1, 1, 221

    CrossRef

  6. 6
    David A. Duchêne, Sebastian Duchêne, Edward C. Holmes, Simon Y.W. Ho, Evaluating the Adequacy of Molecular Clock Models Using Posterior Predictive Simulations, Molecular Biology and Evolution, 2015, msv154

    CrossRef

  7. 7
    James T Thorson, Jason M Cope, Kristin M Kleisner, Jameal F Samhouri, Andrew O Shelton, Eric J Ward, Giants' shoulders 15 years later: lessons, challenges and guidelines in fisheries meta-analysis, Fish and Fisheries, 2015, 16, 2
  8. 8
    James Rockey, Jonathan Temple, Growth econometrics for agnostics and true believers, European Economic Review, 2015,

    CrossRef

  9. 9
    David R. Bickel, Inference after checking multiple Bayesian models for data conflict and applications to mitigating the influence of rejected priors, International Journal of Approximate Reasoning, 2015, 66, 53

    CrossRef

  10. 10
    Jay M. Ver Hoef, Peter L. Boveng, Iterating on a single model is a viable alternative to multimodel inference, The Journal of Wildlife Management, 2015, 79, 5
  11. 11
    Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini, Models, measurement and inference in epithelial tissue dynamics, Mathematical Biosciences and Engineering, 2015, 12, 6, 1321

    CrossRef

  12. 12
    A W Steiner, Moving beyond Chi-squared in nuclei and neutron stars, Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 3, 034004

    CrossRef

  13. 13
    Martin Bulla, Elias Stich, Mihai Valcu, Bart Kempenaers, Off-nest behaviour in a biparentally incubating shorebird varies with sex, time of day and weather, Ibis, 2015, 157, 3
  14. 14
    Michael Gruenstaeudl, Noah M. Reid, Gregory L. Wheeler, Bryan C. Carstens, Posterior predictive checks of coalescent models: P2C2M, an R package, Molecular Ecology Resources, 2015, 15, 5
  15. 15
    David Mimno, David M. Blei, Barbara E. Engelhardt, Posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure, Proceedings of the National Academy of Sciences, 2015, 112, 26, E3441

    CrossRef

  16. 16
    Jun-Fang Xu, Shan Lv, Qing-Yun Wang, Men-Bao Qian, Qin Liu, Robert Bergquist, Xiao-Nong Zhou, Schistosomiasis japonica: Modelling as a tool to explore transmission patterns, Acta Tropica, 2015, 141, 213

    CrossRef

  17. 17
    Sander Greenland, Neil Pearce, Statistical Foundations for Model-Based Adjustments, Annual Review of Public Health, 2015, 36, 1, 89

    CrossRef

  18. 18
    ZITA ORAVECZ, KATHERINE FAUST, WILLIAM H. BATCHELDER, DANIEL A. LEVITIS, Studying the Existence and Attributes of Consensus on Psychological Concepts by a Cognitive Psychometric Model, The American Journal of Psychology, 2015, 128, 1, 61

    CrossRef

  19. 19
    Rene Quispe, Monika Trappschuh, Manfred Gahr, Wolfgang Goymann, Towards more physiological manipulations of hormones in field studies: Comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax, General and Comparative Endocrinology, 2015, 212, 100

    CrossRef

  20. 20
    Richard J. Barker, William A. Link, Truth, models, model sets, AIC, and multimodel inference: A Bayesian perspective, The Journal of Wildlife Management, 2015, 79, 5
  21. 21
    Jean-Philippe Boucher, Rofick Inoussa, A POSTERIORI RATEMAKING WITH PANEL DATA, ASTIN Bulletin, 2014, 44, 03, 587

    CrossRef

  22. 22
    Teddy Groves, An application of Carnapian inductive logic to an argument in the philosophy of statistics, Journal of Applied Logic, 2014, 12, 3, 302

    CrossRef

  23. 23
    C. J. Hutton, Z. Kapelan, L. Vamvakeridou-Lyroudia, D. Savić, Application of Formal and Informal Bayesian Methods for Water Distribution Hydraulic Model Calibration, Journal of Water Resources Planning and Management, 2014, 140, 11, 04014030

    CrossRef

  24. 24
    Monika Culka, Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling, Energy, Sustainability and Society, 2014, 4, 1, 21

    CrossRef

  25. 25
    David M. Blei, Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, Annual Review of Statistics and Its Application, 2014, 1, 1, 203

    CrossRef

  26. 26
    B. Fischhoff, A. L. Davis, Communicating scientific uncertainty, Proceedings of the National Academy of Sciences, 2014, 111, Supplement_4, 13664

    CrossRef

  27. 27
    Mark Staples, Critical rationalism and engineering: ontology, Synthese, 2014, 191, 10, 2255

    CrossRef

  28. 28
    Song S. Qian, Ecological threshold and environmental management: A note on statistical methods for detecting thresholds, Ecological Indicators, 2014, 38, 192

    CrossRef

  29. 29
    Mark James Adams, Feasibility and Uncertainty in Behavior Genetics for the Nonhuman Primate, International Journal of Primatology, 2014, 35, 1, 156

    CrossRef

  30. 30
    Jon Williamson, How Uncertain Do We Need to Be?, Erkenntnis, 2014, 79, 6, 1249

    CrossRef

  31. 31
    Matúš Šimkovic, Birgit Träuble, Perceived displacement explains wolfpack effect, Frontiers in Psychology, 2014, 5,

    CrossRef

  32. 32
    Ronald J. Janssen, Max Hinne, Tom Heskes, Marcel A. J. van Gerven, Quantifying uncertainty in brain network measures using Bayesian connectomics, Frontiers in Computational Neuroscience, 2014, 8,

    CrossRef

  33. 33
    W. Marzocchi, T. H. Jordan, Testing for ontological errors in probabilistic forecasting models of natural systems, Proceedings of the National Academy of Sciences, 2014, 111, 33, 11973

    CrossRef

  34. 34
    Andrew Gelman, Jessica Hwang, Aki Vehtari, Understanding predictive information criteria for Bayesian models, Statistics and Computing, 2014, 24, 6, 997

    CrossRef

  35. 35
    Thierry Chambert, Jay J. Rotella, Megan D. Higgs, Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates, Ecology and Evolution, 2014, 4, 8
  36. 36
    Andrew Gelman, Past, Present, and Future of Statistical Science, 2014,

    CrossRef

  37. 37
    Jan Sprenger, A Synthesis of Hempelian and Hypothetico-Deductive Confirmation, Erkenntnis, 2013, 78, 4, 727

    CrossRef

  38. 38
    Stephen Senn, Comment on Gelman and Shalizi, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  39. 39
    Christian P. Robert, Error and inference: an outsider stand on a frequentist philosophy, Theory and Decision, 2013, 74, 3, 447

    CrossRef

  40. 40
    Denny Borsboom, Brian D. Haig, How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  41. 41
    Anbesaw W. Selassie, Dulaney A. Wilson, E. Elisabeth Pickelsimer, Delia C. Voronca, Nolan R. Williams, Jonathan C. Edwards, Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study, Annals of Epidemiology, 2013, 23, 12, 750

    CrossRef

  42. 42
    Matthew R. Schofield, Richard J. Barker, Peter Taylor, Modeling Individual Specific Fish Length from Capture–Recapture Data using the von Bertalanffy Growth Curve, Biometrics, 2013, 69, 4
  43. 43
    John K. Kruschke, Posterior predictive checks can and should be Bayesian: Comment on Gelman and Shalizi, ‘Philosophy and the practice of Bayesian statistics’, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  44. 44
    Mark Andrews, Thom Baguley, Prior approval: The growth of Bayesian methods in psychology, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  45. 45
    Jean-Louis Fouley, The BUGS Book: A Practical Introduction to Bayesian Analysis, CHANCE, 2013, 26, 4, 56

    CrossRef

  46. 46
    Deborah G. Mayo, The error-statistical philosophy and the practice of Bayesian statistics: Comments on Gelman and Shalizi: ‘Philosophy and the practice of Bayesian statistics’, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  47. 47
    Richard D. Morey, Jan-Willem Romeijn, Jeffrey N. Rouder, The humble Bayesian: Model checking from a fully Bayesian perspective, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  48. 48
    Arjun M. Gopalaswamy, J. Andrew Royle, Mohan Delampady, James D. Nichols, K. Ullas Karanth, David W. Macdonald, Density estimation in tiger populations: combining information for strong inference, Ecology, 2012, 93, 7, 1741

    CrossRef

  49. 49
    M. Buoro, E. Prévost, O. Gimenez, Digging through model complexity: using hierarchical models to uncover evolutionary processes in the wild, Journal of Evolutionary Biology, 2012, 25, 10