SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Jean-Philippe Boucher, Rofick Inoussa, A POSTERIORI RATEMAKING WITH PANEL DATA, ASTIN Bulletin, 2014, 44, 03, 587

    CrossRef

  2. 2
    Teddy Groves, An application of Carnapian inductive logic to an argument in the philosophy of statistics, Journal of Applied Logic, 2014, 12, 3, 302

    CrossRef

  3. 3
    J. M. Reed, C. R. Field, M. D. Silbernagle, A. Nadig, K. Goebel, A. Dibben-Young, P. Donaldson, C. S. Elphick, Application of the complete-data likelihood to estimate juvenile and adult survival for the endangered Hawaiian stilt, Animal Conservation, 2014, 17, 4
  4. 4
    David M. Blei, Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, Annual Review of Statistics and Its Application, 2014, 1, 1, 203

    CrossRef

  5. 5
    B. Fischhoff, A. L. Davis, Communicating scientific uncertainty, Proceedings of the National Academy of Sciences, 2014, 111, Supplement_4, 13664

    CrossRef

  6. 6
    Mark Staples, Critical rationalism and engineering: ontology, Synthese, 2014, 191, 10, 2255

    CrossRef

  7. 7
    Song S. Qian, Ecological threshold and environmental management: A note on statistical methods for detecting thresholds, Ecological Indicators, 2014, 38, 192

    CrossRef

  8. 8
    Mark James Adams, Feasibility and Uncertainty in Behavior Genetics for the Nonhuman Primate, International Journal of Primatology, 2014, 35, 1, 156

    CrossRef

  9. 9
    James T Thorson, Jason M Cope, Kristin M Kleisner, Jameal F Samhouri, Andrew O Shelton, Eric J Ward, Giants' shoulders 15 years later: lessons, challenges and guidelines in fisheries meta-analysis, Fish and Fisheries, 2014, 15, 3
  10. 10
    Jun-Fang Xu, Shan Lv, Qing-Yun Wang, Men-Bao Qian, Qin Liu, Robert Bergquist, Xiao-Nong Zhou, Schistosomiasis japonica: Modelling as a tool to explore transmission patterns, Acta Tropica, 2014,

    CrossRef

  11. 11
    W. Marzocchi, T. H. Jordan, Testing for ontological errors in probabilistic forecasting models of natural systems, Proceedings of the National Academy of Sciences, 2014, 111, 33, 11973

    CrossRef

  12. 12
    Andrew Gelman, Jessica Hwang, Aki Vehtari, Understanding predictive information criteria for Bayesian models, Statistics and Computing, 2014, 24, 6, 997

    CrossRef

  13. 13
    Thierry Chambert, Jay J. Rotella, Megan D. Higgs, Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates, Ecology and Evolution, 2014, 4, 8
  14. 14
    Andrew Gelman, Past, Present, and Future of Statistical Science, 2014,

    CrossRef

  15. 15
    Jan Sprenger, A Synthesis of Hempelian and Hypothetico-Deductive Confirmation, Erkenntnis, 2013, 78, 4, 727

    CrossRef

  16. 16
    C. J. Hutton, Z. Kapelan, L. Vamvakeridou-Lyroudia, D. Savić, Application of Formal and Informal Bayesian Methods for Water Distribution Hydraulic Model Calibration, Journal of Water Resources Planning and Management, 2013, 04014030

    CrossRef

  17. 17
    Stephen Senn, Comment on Gelman and Shalizi, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  18. 18
    Christian P. Robert, Error and inference: an outsider stand on a frequentist philosophy, Theory and Decision, 2013, 74, 3, 447

    CrossRef

  19. 19
    Denny Borsboom, Brian D. Haig, How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  20. 20
    Jon Williamson, How Uncertain Do We Need to Be?, Erkenntnis, 2013,

    CrossRef

  21. 21
    Anbesaw W. Selassie, Dulaney A. Wilson, E. Elisabeth Pickelsimer, Delia C. Voronca, Nolan R. Williams, Jonathan C. Edwards, Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study, Annals of Epidemiology, 2013, 23, 12, 750

    CrossRef

  22. 22
    Matthew R. Schofield, Richard J. Barker, Peter Taylor, Modeling Individual Specific Fish Length from Capture–Recapture Data using the von Bertalanffy Growth Curve, Biometrics, 2013, 69, 4
  23. 23
    John K. Kruschke, Posterior predictive checks can and should be Bayesian: Comment on Gelman and Shalizi, ‘Philosophy and the practice of Bayesian statistics’, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  24. 24
    Mark Andrews, Thom Baguley, Prior approval: The growth of Bayesian methods in psychology, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  25. 25
    Deborah G. Mayo, The error-statistical philosophy and the practice of Bayesian statistics: Comments on Gelman and Shalizi: ‘Philosophy and the practice of Bayesian statistics’, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  26. 26
    Richard D. Morey, Jan-Willem Romeijn, Jeffrey N. Rouder, The humble Bayesian: Model checking from a fully Bayesian perspective, British Journal of Mathematical and Statistical Psychology, 2013, 66, 1
  27. 27
    Arjun M. Gopalaswamy, J. Andrew Royle, Mohan Delampady, James D. Nichols, K. Ullas Karanth, David W. Macdonald, Density estimation in tiger populations: combining information for strong inference, Ecology, 2012, 93, 7, 1741

    CrossRef

  28. 28
    M. Buoro, E. Prévost, O. Gimenez, Digging through model complexity: using hierarchical models to uncover evolutionary processes in the wild, Journal of Evolutionary Biology, 2012, 25, 10