SEARCH

SEARCH BY CITATION

References

  • Abbott, A. (2001). Chaos of disciplines . Chicago : University of Chicago Press.
  • al Ghazali, Abu Hamid Muhammad ibn Muhammad at-Tusi (1100/1997). The incoherence of the philosophers = Tahafut al-falasifah: A parallel English-Arabic text , trans. M. E. Marmura. Provo , UT : Brigham Young University Press.
  • Ashby, W. R. (1960). Design for a brain: The origin of adaptive behaviour (2nd ed.). London : Chapman & Hall.
  • Atkinson, A. C., & Donev, A. N. (1992). Optimum experimental designs . Oxford : Clarendon Press.
  • Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.) (1992). The adapted mind: Evolutionary psychology and the generation of culture . Oxford : Oxford University Press.
  • Bartlett, M. S. (1967). Inference and stochastic processes. Journal of the Royal Statistical Society, Series A , 130, 457478.
  • Bayarri, M. J., & Berger, J. O. (2000). P values for composite null models. Journal of the American Statistical Association , 95, 11271142.
  • Bayarri, M. J., & Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statistical Science , 19, 5880. doi:10.1214/088342304000000116
  • Bayarri, M. J., & Castellanos, M. E. (2007). Bayesian checking of the second levels of hierarchical models. Statistical Science , 22, 322343.
  • Berger, J. O., & Sellke, T. (1987). Testing a point null hypothesis: Irreconcilability of p-values and evidence. Journal of the American Statistical Association , 82, 112122.
  • Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect. Annals of Mathematical Statistics , 37, 5158. doi:10.1214/aoms/1177699597 Correction: 37 (1966), 745–746.
  • Berk, R. H. (1970). Consistency a posteriori. Annals of Mathematical Statistics , 41, 894906. doi:10.1214/aoms/1177696967
  • Bernard, C. (1865/1927). Introduction to the study of experimental medicine , trans. H. C. Greene. New York : Macmillan. First published as Introduction à l’étude de la médecine experimentale , Paris : J. B. Baillière. Reprinted New York : Dover, 1957.
  • Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory . New York : Wiley.
  • Binmore, K. (2007). Making decisions in large worlds. Technical Report 266, ESRC Centre for Economic Learning and Social Evolution, University College London . Retrieved from http://else.econ.ucl.ac.uk/papers/uploaded/266.pdf
  • Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning theory. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced lectures in machine learning (pp. 169207). Berlin : Springer.
  • Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness. Journal of the Royal Statistical Society, Series A , 143, 383430.
  • Box, G. E. P. (1983). An apology for ecumenism in statistics. In G. E. P. Box, T. Leonard & C.-F. Wu (Eds.), Scientific inference, data analysis, and robustness (pp. 5184). New York : Academic Press.
  • Box, G. E. P. (1990). Comment on ‘The unity and diversity of probability’ by Glen Shafer. Statistical Science , 5, 448449. doi:10.1214/ss/1177012024
  • Braithwaite, R. B. (1953). Scientific explanation: A study of the function of theory, probability and law in science . Cambridge : Cambridge University Press.
  • Brown, R. Z., Sallow, W., Davis, D. E., & Cochran, W. G. (1955). The rat population of Baltimore, 1952. American Journal of Epidemiology , 61, 89102.
  • Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games . Cambridge : Cambridge University Press.
  • Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging . Cambridge : Cambridge University Press.
  • Cox, D. D. (1993). An analysis of Bayesian inference for nonparametric regression. Annals of Statistics , 21, 903923. doi:10.1214/aos/1176349157
  • Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics . London : Chapman & Hall.
  • Cox, R. T. (1946). Probability, frequency, and reasonable expectation. American Journal of Physics , 14, 113.
  • Cox, R. T. (1961). The algebra of probable inference . Baltimore , MD : Johns Hopkins University Press.
  • Csiszár, I. (1995). Maxent, mathematics, and information theory. In K. M. Hanson & R. N. Silver (Eds.), Maximum entropy and Bayesian methods: Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods (pp. 3550). Dordrecht : Kluwer Academic.
  • Dawid, A. P., & Vovk, V. G. (1999). Prequential probability: Principles and properties. Bernoulli , 5, 125162. Retrieved from: http://projecteuclid.org/euclid.bj/1173707098
  • Donovan, A., Laudan, L., & Laudan, R. (Eds.), (1988). Scrutinizing science: Empirical studies of scientific change . Dordrecht : Kluwer Academic. Reprinted 1992 (Baltimore, MD: Johns Hopkins University Press) with a new introduction.
  • Doob, J. L. (1949). Application of the theory of martingales. In Colloques internationaux du Centre National de la Recherche Scientifique , Vol. 13 (pp. 2327). Paris : Centre National de la Recherche Scientifique.
  • Duhem, P. (1914/1954). The aim and structure of physical theory , trans. P. P. Wiener. Princeton , NJ : Princeton University Press.
  • Earman, J. (1992). Bayes or bust? A critical account of Bayesian confirmation theory . Cambridge , MA : MIT Press.
  • Eggertsson, T. (1990). Economic behavior and institutions . Cambridge : Cambridge University Press.
  • Fitelson, B., & Thomason, N. (2008). Bayesians sometimes cannot ignore even very implausible theories (even ones that have not yet been thought of). Australasian Journal of Logic , 6, 2536. Retrieved from: http://philosophy.unimelb.edu.au/ajl/2008/2008_2.pdf
  • Foster, D. P., & Young, H. P. (2003). Learning, hypothesis testing and Nash equilibrium. Games and Economic Behavior , 45, 7396. doi:10.1016/S0899-8256(03)00025-3
  • Fraser, D. A. S., & Rousseau, J. (2008). Studentization and deriving accurate p-values. Biometrika , 95, 116. doi:10.1093/biomet/asm093
  • Freedman, D. A. (1999). On the Bernstein-von Mises theorem with infinite-dimensional parameters. Annals of Statistics , 27, 11191140. doi:10.1214/aos/1017938917
  • Gelman, A. (1994). Discussion of ‘A probabilistic model for the spatial distribution of party support in multiparty elections’ by S. Merrill. Journal of the American Statistical Association , 89, 1198.
  • Gelman, A. (2003). A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. International Statistical Review , 71, 369382. doi:10.1111/j.1751-5823.2003.tb00203.x
  • Gelman, A. (2004). Treatment effects in before-after data. In A. Gelman & X.-L. Meng (Eds.), Applied Bayesian modeling and causal inference from incomplete-data perspectives (pp. 191198). Chichester: Wiley.
  • Gelman, A. (2007). Comment: ‘Bayesian checking of the second levels of hierarchical models’. Statistical Science , 22, 349352. doi:10.1214/07-STS235A
  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Boca Raton , FL : CRC Press.
  • Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models . Cambridge : Cambridge University Press.
  • Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics , 2, 13601383. doi:10.1214/08-AOAS191
  • Gelman, A., & King, G. (1994). Enhancing democracy through legislative redistricting. American Political Science Review , 88, 541559.
  • Gelman, A., Lee, D., & Ghitza, Y. (2010). Public opinion on health care reform. The Forum , 8(1). doi:10.2202/1540-8884.1355
  • Gelman, A., Meng, X.-L., & Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica , 6, 733807. Retrieved from: http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n41/j6n41.htm
  • Gelman, A., Park, D., Shor, B., Bafumi, J., & Cortina, J. (2008). Red state, blue state, rich state, poor state: Why Americans vote the way they do . Princeton , NJ : Princeton University Press. doi:10.1561/100.00006026
  • Gelman, A., & Rubin, D. B. (1995). Avoiding model selection in Bayesian social research. Sociological Methodology , 25, 165173.
  • Gelman, A., Shor, B., Park, D., & Bafumi, J. (2008). Rich state, poor state, red state, blue state: What’s the matter with Connecticut? Quarterly Journal of Political Science , 2, 345367.
  • Ghitza, Y., & Gelman, A. (2012). Deep interactions with MRP: presidential turnout and voting patterns among small electoral subgroups . Technical report, Department of Political Science, Columbia University.
  • Ghosh, J. K., & Ramamoorthi, R. V. (2003). Bayesian nonparametrics . New York : Springer.
  • Giere, R. N. (1988). Explaining science: A cognitive approach . Chicago : University of Chicago Press.
  • Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world . Oxford : Oxford University Press.
  • Gigerenzer, G., Todd, P. M., & ABC Research Group. (1999). Simple heuristics that make us smart . Oxford : Oxford University Press.
  • Glymour, C. (1980). Theory and evidence . Princeton , NJ : Princeton University Press.
  • Good, I. J. (1983). Good thinking: The foundations of probability and its applications . Minneapolis : University of Minnesota Press.
  • Good, I. J., & Crook, J. F. (1974). The Bayes/non-Bayes compromise and the multinomial distribution. Journal of the American Statistical Association , 69, 711720.
  • Gray, R. M. (1990). Entropy and information theory . New York : Springer.
  • Greenland, S. (1998). Induction versus Popper: Substance versus semantics. International Journal of Epidemiology , 27, 543548. doi:10.1093/ije/27.4.543
  • Greenland, S. (2009). Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Statistical Science , 24, 195210. doi:10.1214/09-STS291
  • Grünwald, P. D. (2007). The minimum description length principle . Cambridge , MA : MIT Press.
  • Grünwald, P. D., & Langford, J. (2007). Suboptimal behavior of Bayes and MDL in classification under misspecification. Machine Learning , 66, 119149. doi:10.1007/s10994-007-0716-7
  • Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables. Statistical Science , 20, 111140. doi:10.1214/088342305000000098
  • Guttorp, P. (1995). Stochastic modeling of scientific data . London : Chapman & Hall.
  • Haack, S. (1993). Evidence and inquiry: Towards reconstruction in epistemology . Oxford : Blackwell.
  • Hacking, I. (2001). An introduction to probability and inductive logic . Cambridge : Cambridge University Press.
  • Halpern, J. Y. (1999). Cox’s theorem revisited. Journal of Artificial Intelligence Research , 11, 429435. doi:10.1613/jair.644
  • Handcock, M. S. (2003). Assessing degeneracy in statistical models of social networks. Working Paper no. 39, Center for Statistics and the Social Sciences, University of Washington . Retrieved from http://www.csss.washington.edu/Papers/wp39.pdf
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Berlin : Springer.
  • Hempel, C. G. (1965). Aspects of scientific explanation . Glencoe, IL: Free Press.
  • Hill, J. R. (1990). A general framework for model-based statistics. Biometrika , 77, 115126.
  • Hjort, N. L., Holmes, C., Müller, P., & Walker, S. G. (Eds.), (2010). Bayesian nonparametrics . Cambridge : Cambridge University Press.
  • Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery . Cambridge , MA : MIT Press.
  • Howson, C., & Urbach, P. (1989). Scientific reasoning: The Bayesian approach . La Salle, IL: Open Court.
  • Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association , 103, 248258. doi:10.1198/016214507000000446
  • Jaynes, E. T. (2003). Probability theory: The logic of science . Cambridge : Cambridge University Press.
  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association , 90, 773795.
  • Kass, R. E., & Vos, P. W. (1997). Geometrical foundations of asymptotic inference . New York : Wiley.
  • Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association , 91, 13431370.
  • Kelly, K. T. (1996). The logic of reliable inquiry . Oxford : Oxford University Press.
  • Kelly, K. T. (2010). Simplicity, truth, and probability. In P. Bandyopadhyay & M. Forster (Eds.), Handbook on the philosophy of statistics . Dordrecht : Elsevier.
  • Kitcher, P. (1993). The advancement of science: Science without legend, objectivity without illusions . Oxford : Oxford University Press.
  • Kleijn, B. J. K., & van der Vaart, A. W. (2006). Misspecification in infinite-dimensional Bayesian statistics. Annals of Statistics , 34, 837877. doi:10.1214/009053606000000029
  • Kolakowski, L. (1968). The alienation of reason: A history of positivist thought , trans. N. Guterman. Garden City , NY : Doubleday.
  • Kuhn, T. S. (1957). The Copernican revolution: Planetary astronomy in the development of western thought . Cambridge , MA : Harvard University Press.
  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago : University of Chicago Press.
  • Lakatos, I. (1978). Philosophical papers . Cambridge : Cambridge University Press.
  • Laudan, L. (1996). Beyond positivism and relativism: Theory, method and evidence . Boulder, Colorado: Westview Press.
  • Laudan, L. (1981). Science and hypothesis . Dodrecht: D. Reidel.
  • Li, Q., & Racine, J. S. (2007). Nonparametric econometrics: Theory and practice . Princeton , NJ : Princeton University Press.
  • Lijoi, A., Prünster, I., & Walker, S. G. (2007). Bayesian consistency for stationary models. Econometric Theory , 23, 749759. doi:10.1017/S0266466607070314
  • Lindsay, B., & Liu, L. (2009). Model assessment tools for a model false world. Statistical Science , 24, 303318. doi:10.1214/09-STS302
  • Manski, C. F. (2007). Identification for prediction and decision . Cambridge , MA : Harvard University Press.
  • Manski, C. F. (2011). Actualist rationality. Theory and Decision , 71. doi:10.1007/s11238-009-9182-y
  • Mayo, D. G. (1996). Error and the growth of experimental knowledge . Chicago : University of Chicago Press.
  • Mayo, D. G., & Cox, D. R. (2006). Frequentist statistics as a theory of inductive inference. In J. Rojo (ed.), Optimality: The Second Erich L. Lehmann Symposium (pp. 7797). Bethesda , MD : Institute of Mathematical Statistics.
  • Mayo, D. G., & Spanos, A. (2004). Methodology in practice: Statistical misspecification testing. Philosophy of Science , 71, 10071025.
  • Mayo, D. G., & Spanos, A. (2006). Severe testing as a basic concept in a Neyman-Pearson philosophy of induction. British Journal for the Philosophy of Science , 57, 323357. doi:10.1093/bjps/axl003
  • McAllister, D. A. (1999). Some PAC-Bayesian theorems. Machine Learning , 37, 355363. doi:10.1023/A:1007618624809
  • McCarty, N., Poole, K. T., & Rosenthal, H. (2006). Polarized America: The dance of ideology and unequal riches . Cambridge , MA : MIT Press.
  • Merrill III, S. (1994). A probabilistic model for the spatial distribution of party support in multiparty electorates. Journal of the American Statistical Association , 89, 11901197.
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics , 21, 10871092. doi:10.1063/1.1699114
  • Morris, C. N. (1986). Comment on ‘Why isn’t everyone a Bayesian?’. American Statistician , 40, 78.
  • Müller, U. K. (2011). Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix. Econometrica , submitted. Retrieved from http://www.princeton.edu/~umueller/sandwich.pdf
  • Newman, M. E. J., & Barkema, G. T. (1999). Monte Carlo methods in statistical physics . Oxford : Clarendon Press.
  • Norton, J. D. (2003). A material theory of induction. Philosophy of Science , 70, 647670. doi:10.1086/378858
  • Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Computation , 17, 14801507. doi:10.1162/0899766053723032
  • Popper, K. R. (1934/1959). The logic of scientific discovery . London : Hutchinson.
  • Popper, K. R. (1945). The open society and its enemies . London : Routledge.
  • Quine, W. V. O. (1961). From a logical point of view: Logico-philosophical essays (2nd ed.). Cambridge , MA : Harvard University Press.
  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology , 25, 111196.
  • Ripley, B. D. (1988). Statistical inference for spatial processes . Cambridge : Cambridge University Press.
  • Rivers, D., & Vuong, Q. H. (2002). Model selection tests for nonlinear dynamic models. Econometrics Journal , 5, 139. doi:10.1111/1368-423X.t01-1-00071
  • Robins, J. M., van der Vaart, A., & Ventura, V. (2000). Asymptotic distribution of p values in composite null models (with discussions and rejoinder). Journal of the American Statistical Association , 95, 11431172.
  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics , 6, 3458. doi:10.1214/aos/1176344064
  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics , 12, 11511172. doi:10.1214/aos/1176346785
  • Russell, B. (1948). Human knowledge: Its scope and limits . New York : Simon and Schuster.
  • Salmon, W. C. (1990). The appraisal of theories: Kuhn meets Bayes. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (Vol. 2, pp. 325332). Chicago : University of Chicago Press.
  • Savage, L. J. (1954). The foundations of statistics . New York : Wiley.
  • Schervish, M. J. (1995). Theory of statistics . Berlin : Springer.
  • Seidenfeld, T. (1979). Why I am not an objective Bayesian: Some reflections prompted by Rosenkrantz. Theory and Decision , 11, 413440. doi:10.1007/BF00139451
  • Seidenfeld, T. (1987). Entropy and uncertainty. In I. B. MacNeill & G. J. Umphrey (Eds.), Foundations of statistical inference (pp. 259287). Dordrecht : D. Reidel.
  • Shalizi, C. R. (2009). Dynamics of Bayesian updating with dependent data and misspecified models. Electronic Journal of Statistics , 3, 10391074. doi:10.1214/09-EJS485
  • Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodology , 36, 99153. doi:10.1111/j.1467-9531.2006.00176.x
  • Spanos, A. (2007). Curve fitting, the reliability of inductive inference, and the error-statistical approach. Philosophy of Science , 74, 10461066. doi:10.1086/525643
  • Stove, D. C. (1982). Popper and after: Four modern irrationalists . Oxford : Pergamon Press.
  • Stove, D. C. (1986). The rationality of induction . Oxford : Clarendon Press.
  • Tilly, C. (2004). Observations of social processes and their formal representations. Sociological Theory , 22, 595602. Reprinted in Tilly (2008). doi:10.1111/j.0735-2751.2004.00235.x
  • Tilly, C. (2008). Explaining social processes . Boulder, CO: Paradigm.
  • Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts . Princeton , NJ : Princeton University Press.
  • Tukey, J. W. (1977). Exploratory data analysis . Reading, MA: Addison-Wesley.
  • Uffink, J. (1995). Can the maximum entropy principle be explained as a consistency requirement? Studies in the History and Philosophy of Modern Physics , 26B, 223261. doi:10.1016/1355-2198(95)00015-1
  • Uffink, J. (1996). The constraint rule of the maximum entropy principle. Studies in History and Philosophy of Modern Physics , 27, 4779. doi:10.1016/1355-2198(95)00022-4
  • Vansteelandt, S., Goetghebeur, E., Kenward, M. G., & Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica , 16, 953980.
  • Vidyasagar, M. (2003). Learning and generalization: With applications to neural networks (2nd ed.). Berlin : Springer.
  • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica , 57, 307333.
  • Wahba, G. (1990). Spline models for observational data . Philadelphia : Society for Industrial and Applied Mathematics.
  • Wasserman, L. (2006). Frequentist Bayes is objective. Bayesian Analysis , 1, 451456. doi:10.1214/06-BA116H
  • Weinberg, S. (1999). What is quantum field theory, and what did we think it was? In T. Y. Cao (Ed.), Conceptual foundations of quantum field theory (pp. 241251). Cambridge : Cambridge University Press.
  • White, H. (1994). Estimation, inference and specification analysis . Cambridge : Cambridge University Press.
  • Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data . Cambridge , MA : MIT Press.
  • Ziman, J. (2000). Real science: What it is, and what it means . Cambridge : Cambridge University Press.