SEARCH

SEARCH BY CITATION

References

  • Allen, D. (1998). Record-keeping and routine nursing practice: The view from the wards. Journal of Advanced Nursing, 27(6), 12231230.
  • Breault, J. L., Goodall, C. R., & Fos, P. J. (2002). Data mining a diabetic data warehouse. Artificial Intelligence in Medicine, 26(1–2), 3754.
  • Bulechek, G. M., Butcher, H. K., & Dochterman, J. M. (2007). Nursing interventions classification (NIC). St. Louis, MO: Mosby.
  • Cheung, R. B., Moody, L. E., & Cockram, C. (2002). Data mining strategies for shaping nursing and health policy agendas. Policy, Politics & Nursing Practice, 3(3), 248260.
  • Curtis, J. R., Nielsen, E. L., Treece, P. D., Downey, L., Dotolo, D., Shannon, S. E., . . . Engelberg, R. A. (2011). Effect of a quality-improvement intervention on end-of-life care in the intensive care unit: A randomized trial. American Journal of Respiratory and Critical Care Medicine, 183(3), 348355.
  • Duan, L., Street, W., & Lu, D. (2008). A nursing care plan recommender system using a data mining approach. In J. Li, D. Aleman, & R. Sikora (Eds.), Paper presented at the Proceedings of the 3rd INFORMS Workshop on Data Mining and Health Informatics. Washington, DC: Informs 2008. Retrieved from http://dollar.biz.uiowa.edu/~street/research/informs08_duan.pdf
  • Embley, D. W., Tao, C., & Liddle, S. W. (2005). Automating the extraction of data from HTML tables with unknown structure. Data & Knowledge Engineering, 54(1), 328.
  • Fayyad, U. M. (1996). Advances in knowledge discovery and data mining. Menlo Park, CA: AAAI Press.
  • Goodwin, L., VanDyne, M., Lin, S., & Talbert, S. (2003). Data mining issues and opportunities for building nursing knowledge. Journal of Biomedical Informatics, 36(4–5), 379388.
  • Hanauer, D. A., Rhodes, D. R., & Chinnaiyan, A. M. (2009). Exploring clinical associations using “-omics” based enrichment analyses. PLoS ONE, 4(4), e5203. Retrieved from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005203
  • Hardey, M., Payne, S., & Coleman, P. (2000). “Scraps”: Hidden nursing information and its influence on the delivery of care. Journal of Advanced Nursing, 32(1), 208214.
  • Heckerman, D. (1997). Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1(1), 79119.
  • Hsia, T., & Lin, L. (2006). A framework for designing nursing knowledge management systems. Interdisciplinary Journal of Information, Knowledge, and Management, 1, 1322.
  • Karkkainen, O., Bondas, T., & Eriksson, K. (2005). Documentation of individualized patient care: A qualitative metasynthesis. Nursing Ethics, 12(2), 123132.
  • Keenan, G., Barkauskas, V., Johnson, M., Maas, M., Moorhead, S., & Reed, D. (2003). Establishing the validity, reliability, and sensitivity of NOC in adult care nurse practitioner clinics. Outcomes Management, 7(7), 7483.
  • Keenan, G., Stocker, J., Barkauskas, V., Johnson, M., Maas, M., Moorhead, S., . . . Reed, D. (2003). Assessing the reliability, validity, and sensitivity of nursing outcomes classification in home care settings. Journal of Nursing Measurement, 11(2), 135155.
  • Keenan, G., Tschannen, G. D., & Wesley, M. (2008). Standardized nursing terminologies can transform practice. Journal of Nursing Administration, 38(3), 103106.
  • Keenan, G., & Yakel, E. (2005). Promoting safe nursing care by bringing visibility to the disciplinary aspects of interdisciplinary care . AMIA Annual Symposium Proceedings, American Medical Informatics Association, 385–389.
  • Keenan, G., Yakel, E., Dunn Lopez, K., Tschannen, D., & Ford, Y. B. (in review). Challenges to nurses' efforts of retrieving, documenting and communicating patient care information. Journal of the American Medical Informatics Association.
  • Keenan, G., Yakel, E., Yao, Y. W., Xu, D., Szalacha, L., Tschannen, D., . . . Wilkie, D. J. (in press). Maintaining a consistent big picture: Meaningful use of a web-based POC EHR system. International Journal of Nursing Knowledge.
  • Kraft, M., Desouza, K., & Androwich, I. (2003). Data mining in healthcare information systems: Case study of a Veterans' Administration spinal cord injury population . Paper presented at the Hawaii International Conference on System Sciences, Hawaii.
  • Lee, S. M., & Abbott, P. A. (2003). Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers. Journal of Biomedical Informatics, 36(4–5), 389399.
  • Managed Care Outlook. (2010). The road to EHR implementation is paved with incentives and challenges. Managed Care Outlook, 23(1). Retrieved from http://www.guidonps.com/default/assets/File/ManagedCareOutlook_1-2010.pdf
  • Moorhead, S., Johnson, M., & Maas, M. (2004). Iowa outcomes project. Nursing outcomes classification (NOC). St. Louis, MO: Mosby.
  • Mullinsa, I. M., Siadatya, M. S., Lymana, J., Scullya, K., Garrettb, C. T., Millerb, W. G., . . . Knaus, W. A. (2006). Data mining and clinical data repositories: Insights from a 667,000 patient data set. Computers in Biology and Medicine, 36, 13511377.
  • Murray, M. A., Fiset, V., Young, S., & Kryworuchko, J. (2009). Where the dying live: A systematic review of determinants of place of end-of-life cancer care. Oncology Nursing Forum, 36(1), 6977.
  • NANDA-I. (2003). Nursing diagnoses: Definitions and classifications 2003–2004. Philadelphia: Author.
  • Rudman, W. J., Brown, C., Andrew, M. D., Hewitt, C. R., Carpenter, W. O., Campbell, B., . . . Noble, S. L. (2002). The use of data mining tools in identifying medication error near misses and adverse drug events. Topics in Health Information Management, 23(2), 94103.
  • Smith, T., Coyne, P., Cassel, B., Penberthy, L., Hopson, A., & Hager, M. (2003). A high-volume specialist palliative care unit and team may reduce in-hospital end-of-life care costs. Journal of Palliative Medicine, 6(5), 699705.
  • Stephan, C., Cammann, H., Semjonow, A., Diamandis, E. P., Wymenga, L. F., Lein, M., . . . Jung, K. (2002). Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clinical Chemistry, 48(8), 12791287.
  • Teno, J. M., Fisher, E., Hamel, M. B., Wu, A. W., Murphy, D. J., Wenger, N. S., . . . Harrell, F. E., Jr. (2000). Decision-making and outcomes of prolonged ICU stays in seriously ill patients. Journal of the American Geriatrics Society, 48(Suppl. 5), S70S74.
  • Teno, J. M., Lynn, J., Connors, A. F., Jr, Wenger, N., Phillips, R. S., Alzola, C., . . . Knaus, W. A. (1997). The illusion of end-of-life resource savings with advance directives. Journal of the American Geriatrics Society, 45(4), 513518.
  • Trifiro, G., Pariente, A., Coloma, P. M., Kors, J. A., Polimeni, G., Miremont-Salame, G., . . . EU-ADR Group. (2009). Data mining on electronic health record databases for signal detection in pharmacovigilance: Which events to monitor? Pharmacoepidemiology and Drug Safety, 18(12), 11761184.
  • Westra, B., Dey, S., Steinbach, M., Kumar, V., Oancea, C., Savik, K., . . . Dierich, M. (2011). Interpretable predictive models for knowledge discovery from home-care electronic health records. Journal of Healthcare Engineering, 2(1), 5571.
  • Westra, B., Savik, K., Oancea, C., Chormanski, L., Holmes, J. H., & Bliss, D. (2011). Predicting improvements in urinary and bowel incontinence for home health patients using electronic health record data. Journal of Wound, Ostomy, and Continence Nursing, 38(1), 7787.
  • Yu, W. (2006). End of life care: Medical treatments and costs by age, race, and region . IIR 02-189. Retrieved from http://www.hsrd.research.va.gov/research/abstracts.cfm?Project_ID=2141693100
  • Zhang, B., Wright, A. A., Huskamp, H. A., Nilsson, M. E., Maciejewski, M. L., Earle, C. C., . . . Prigerson, H. G. (2009). Health care costs in the last week of life: Associations with end-of-life conversations. Archives of Internal Medicine, 169(5), 480488.