• 1
    U.S. Department of Health and Human Services. Healthy People 2020 framework: the vision, mission, and goals of Healthy People 2020. 2011. [WWW document]. URL (accessed December 8, 2011).
  • 2
    Harper S, Lynch J, Burris S, Davey Smith G. Trends in the black-white life expectancy gap in the United States, 1983–2003. JAMA 2007; 297: 12241232.
  • 3
    Hu G, Bouchard C, Bray GA, etal. Trunk versus extremity adiposity and cardiometabolic risk factors in white and African American adults. Diabetes Care 2011; 34: 14151418.
  • 4
    Newton JRL, Bouchard C, Bray GA, etal. Abdominal adiposity depots are correlates of adverse cardiometabolic risk factors in Caucasian and African American adults. Nutr Diabetes 2011; 1: e2.
  • 5
    Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003–2006. JAMA 2008; 299: 24012405.
  • 6
    Syme C, Abrahamowicz M, Leonard GT, etal. Intra-abdominal adiposity and individual components of the metabolic syndrome in adolescence: sex differences and underlying mechanisms. Arch Pediatr Adolesc Med 2008; 162: 453461.
  • 7
    Cali AM, Caprio S. Ectopic fat deposition and the metabolic syndrome in obese children and adolescents. Horm Res 2009; 71(Suppl. 1):27.
  • 8
    D'Adamo E, Cali AM, Weiss R, etal. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care 2010; 33: 18171822.
  • 9
    Lee S, Kuk JL, Hannon TS, Arslanian SA. Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity 2008; 16: 10661071.
  • 10
    Lee S, Kuk JL, Kim Y, Arslanian S. Measurement site of visceral adipose tissue and prediction of metabolic syndrome in youth. Pediatr Diabetes 2011; 12: 250257.
  • 11
    Muller MJ, Bosy-Westphal A. Assessment of energy expenditure in children and adolescents. Curr Opin Clin Nutr Metab Care 2003; 6: 519530.
  • 12
    Plachta-Danielzik S, Gehrke MI, Kehden B, etal. Fat percentiles for German children and adolescents. Obes Facts 2012; 5: 7790.
  • 13
    Bosy-Westphal A, Booke CA, Blocker T, etal. Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population. J Nutr 2010; 140: 954961.
  • 14
    Hitze B, Bosy-Westphal A, Bielfeldt F, Settler U, Monig H, Muller MJ. Measurement of waist circumference at four different sites in children, adolescents, and young adults: concordance and correlation with nutritional status as well as cardiometabolic risk factors. Obes Facts 2008; 1: 243249.
  • 15
    Goele K, Bosy-Westphal A, Rumcker B, Lagerpusch M, Muller MJ. Influence of changes in body composition and adaptive thermogenesis on the difference between measured and predicted weight loss in obese women. Obes Facts 2009; 2: 105109.
  • 16
    Costa DN, Pedrosa I, McKenzie C, Reeder SB, Rofsky NM. Body MRI using IDEAL. AJR Am J Roentgenol 2008; 190: 10761084.
  • 17
    Saukkonen T, Heikkinen S, Hakkarainen A, etal. Association of intramyocellular, intraperitoneal and liver fat with glucose tolerance in severely obese adolescents. Eur J Endocrinol 2010; 163: 413419.
  • 18
    Xiang QS. Two-point water-fat imaging with partially-opposed-phase (POP) acquisition: an asymmetric Dixon method. Magn Reson Med 2006; 56: 572584.
  • 19
    Shen W, Wang Z, Punyanita M, etal. Adipose tissue quantification by imaging methods: a proposed classification. Obesity 2003; 11: 516.
  • 20
    Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J. Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 2010; 32: 204210.
  • 21
    Shen W, Chen J. Application of imaging and other noninvasive techniques in determining adipose tissue mass. Methods Mol Biol 2008; 456: 3954.
  • 22
    Siegel MJ, Hildebolt CF, Bae KT, Hong C, White NH. Total and intraabdominal fat distribution in preadolescents and adolescents: measurement with MR imaging. Radiology 2007; 242: 846856.
  • 23
    Shen W, Chen J, Kwak S, Punyanitya M, Heymsfield SB. Between-slice intervals in quantification of adipose tissue and muscle in children. Int J Pediatr Obes 2011; 6: 149156.
  • 24
    Shen W, Chen J, Punyanita M, Gantz M, Heymsfield SB. Single slice imaging for estimating visceral and subcutaneous adipose tissue volume changes following weight loss. The 2nd Abdominal Obesity Congress, Buenos Aires, Argentina, 2011.
  • 25
    Shen W. Pediatric obesity phenotyping by magnetic resonance methods. Curr Opin Clin Nutr Metab Care 2005; 8: 595601.
  • 26
    Bridge P, Pocock NA, Nguyen T, etal. Validation of longitudinal DXA changes in body composition from pre- to mid-adolescence using MRI as reference. J Clin Densitom 2011; 14: 340347.
  • 27
    Kullberg J, Brandberg J, Angelhed JE, etal. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. Br J Radiol 2009; 82: 123130.
  • 28
    Harrington T, Thomas E, Modi N, Frost G, Coutts G, Bell J. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 2002; 37: 95100.
  • 29
    Harrington TAM, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res 2004; 55: 437441.
  • 30
    Modi N, Thomas EL, Harrington TA, Uthaya S, Dore CJ, Bell JD. Determinants of adiposity during preweaning postnatal growth in appropriately grown and growth-restricted term infants. Pediatr Res 2006; 60: 345348.
  • 31
    Modi N, Thomas EL, Uthaya SN, Umranikar S, Bell JD, Yajnik C. Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatr Res 2009; 65: 584587.
  • 32
    Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N. Altered adiposity after extremely preterm birth. Pediatr Res 2005; 57: 211215.
  • 33
    Modi N, Murgasova D, Ruager-Martin R, etal. The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res 2011; 70: 287291.
  • 34
    Enerback S. Human brown adipose tissue. Cell Metab 2010; 11: 248252.
  • 35
    Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 2005; 35: 984990.
  • 36
    Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH. Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 2011; 158: 722726.
  • 37
    Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TA, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 2012; 160: 604609.
  • 38
    Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes 2009; 58: 25832587.
  • 39
    Cohade C, Mourtzikos KA, Wahl RL. ‘USA-Fat’: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 2003; 44: 12671270.
  • 40
    Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010; 299: E601E606.
  • 41
    Pfannenberg C, Werner MK, Ripkens S, etal. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 2010; 59: 17891793.
  • 42
    Saito M, Okamatsu-Ogura Y, Matsushita M, etal. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 15261531.
  • 43
    Yoneshiro T, Aita S, Matsushita M, etal. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 2011; 19: 17551760.
  • 44
    Gilsanz V, Hu HH, Smith ML, etal. The depiction of brown adipose tissue is related to disease status in pediatric patients with lymphoma. AJR Am J Roentgenol 2012; 198: 909913.
  • 45
    Chalfant J, Smith ML, Hu HH, etal. Brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr 2012. Mar 28 [Epub ahead of print].
  • 46
    Lunati E, Marzola P, Nicolato E, Fedrigo M, Villa M, Sbarbati A. In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 Tesla. J Lipid Res 1999; 40: 13951400.
  • 47
    Sbarbati A, Guerrini U, Marzola P, Asperio R, Osculati F. Chemical shift imaging at 4.7 tesla of brown adipose tissue. J Lipid Res 1997; 38: 343347.
  • 48
    Hu HH, Smith DL, Jr, Nayak KS, Goran MI, Nagy TR. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J Magn Reson Imaging 2010; 31: 11951202.
  • 49
    Branca RT, Warren WS. In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn Reson Med 2011; 65: 313319.
  • 50
    Hamilton G, Smith DL, Jr, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging 2011; 34: 468473.
  • 51
    Zingaretti MC, Crosta F, Vitali A, etal. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 31133120.
  • 52
    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation and Physical Activity, Second Edition. Human Kinetics: Champaign, IL, 2004.
  • 53
    Malina RM, Cumming SP, Morano PJ, Barron M, Miller SJ. Maturity status of youth football players: a noninvasive estimate. Med Sci Sports Exerc 2005; 37: 10441052.
  • 54
    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 2002; 34: 689694.
  • 55
    Malina RM, Coelho e Silva MJ, Figueiredo AJ, Carling C, Beunen GP. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players. J Sport Sci 2012: Epub 03 Feb 2012: DOI: 10.1080/02640414.2011.639382.
  • 56
    Malina RM. Regional body composition: age, sex and ethnic variation. In: Roche AF , Heymsfield SB , Lohman TG (eds). Human Body Composition. Human Kinetics: Champaign, IL, 1996, pp. 217255.
  • 57
    Malina RM. Variation in body composition associated with sex and ethnicity. In: Heymsfield SB , Lohman TG , Wang ZM , Going SB (eds). Human Body Composition, Second Edition. Human Kinetics: Champaign, IL, 2005, pp. 271298.
  • 58
    Malina RM, Koziel S, Bielicki T. Variation in subcutaneous adipose tissue distribution associated with age, sex, and maturation. Am J Hum Biol 1999; 11: 189200.
  • 59
    Sopher A, Shen W, Pietrobelli A. Pediatric body composition methods. In: Heymsfield SB , Lohman TG , Wang ZM , Going SB (eds). Human Body Composition, Second Edition. Human Kinetics: Champaign, IL, 2005, pp. 129140.
  • 60
    He Q, Horlick M, Thornton J, etal. Sex-specific fat distribution is not linear across pubertal groups in a multiethnic study. Obes Res 2004; 12: 725733.
  • 61
    Taylor RW, Grant AM, Williams SM, Goulding A. Sex differences in regional body fat distribution from pre- to postpuberty. Obesity 2010; 18: 14101416.
  • 62
    Malina RM, Bouchard C. Subcutaneous fat distribution during growth. In: Bouchard C , Johnston FE (eds). Fat Distribution during Growth and Later Health Outcomes. Liss: New York, 1988, pp. 6384.
  • 63
    Beunen G, Malina RM, Lefevre J, etal. Size, fatness and relative fat distribution of males of contrasting maturity status during adolescence and as adults. Int J Obes Relat Metab Disord 1994; 18: 670678.
  • 64
    Kindblom JM, Lorentzon M, Norjavaara E, etal. Pubertal timing is an independent predictor of central adiposity in young adult males: the Gothenburg osteoporosis and obesity determinants study. Diabetes 2006; 55: 30473052.
  • 65
    Labayen I, Ortega FB, Moreno LA, etal. The effect of early menarche on later body composition and fat distribution in female adolescents: role of birth weight. Ann Nutr Metab 2009; 54: 313320.
  • 66
    Sandhu J, Ben-Shlomo Y, Cole TJ, Holly J, Davey Smith G. The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ's Hospital (1936–1964). Int J Obes Relat Metab Disord 2006; 30: 1422.
  • 67
    Afghani A, Goran MI. The interrelationships between abdominal adiposity, leptin and bone mineral content in overweight Latino children. Horm Res 2009; 72: 8287.
  • 68
    Asayama K, Dobashi K, Hayashibe H, etal. Threshold values of visceral fat measures and their anthropometric alternatives for metabolic derangement in Japanese obese boys. Int J Obes Relat Metab Disord 2002; 26: 208213.
  • 69
    Asayama K, Hayashibe H, Dobashi K, etal. Decrease in serum adiponectin level due to obesity and visceral fat accumulation in children. Obes Res 2003; 11: 10721079.
  • 70
    Asayama K, Hayashibe H, Endo A, etal. Threshold values of visceral fat and waist girth in Japanese obese children. Pediatr Int 2005; 47: 498504.
  • 71
    Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care 2004; 27: 547552.
  • 72
    Bacha F, Saad R, Gungor N, Janosky J, Arslanian SA. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: race differential in diabetogenic and atherogenic risk factors. J Clin Endocrinol Metab 2003; 88: 25342540.
  • 73
    Ball GD, Huang TT, Cruz ML, Shaibi GQ, Weigensberg MJ, Goran MI. Predicting abdominal adipose tissue in overweight Latino youth. Int J Pediatr Obes 2006; 1: 210216.
  • 74
    Brambilla P, Manzoni P, Sironi S, etal. Peripheral and abdominal adiposity in childhood obesity. Int J Obes Relat Metab Disord 1994; 18: 795800.
  • 75
    Cruz ML, Bergman RN, Goran MI. Unique effect of visceral fat on insulin sensitivity in obese Hispanic children with a family history of type 2 diabetes. Diabetes Care 2002; 25: 16311636.
  • 76
    D'Adamo E, Northrup V, Weiss R, etal. Ethnic differences in lipoprotein subclasses in obese adolescents: importance of liver and intraabdominal fat accretion. Am J Clin Nutr 2010; 92: 500508.
  • 77
    de Ridder CM, de Boer RW, Seidell JC, etal. Body fat distribution in pubertal girls quantified by magnetic resonance imaging. Int J Obes Relat Metab Disord 1992; 16: 443449.
  • 78
    Druet C, Baltakse V, Chevenne D, etal. Independent effect of visceral adipose tissue on metabolic syndrome in obese adolescents. Horm Res 2008; 70: 2228.
  • 79
    Fox KR, Peters DM, Sharpe P, Bell M. Assessment of abdominal fat development in young adolescents using magnetic resonance imaging. Int J Obes Relat Metab Disord 2000; 24: 16531659.
  • 80
    Goran MI, Nagy TR, Treuth MS, etal. Visceral fat in white and African American prepubertal children. Am J Clin Nutr 1997; 65: 17031708.
  • 81
    Gower BA, Nagy TR, Trowbridge CA, Dezenberg C, Goran MI. Fat distribution and insulin response in prepubertal African American and white children. Am J Clin Nutr 1998; 67: 821827.
  • 82
    Huang TT, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes Res 2001; 9: 283289.
  • 83
    Kelly LA, Lane CJ, Ball GD, etal. Birth weight and body composition in overweight Latino youth: a longitudinal analysis. Obesity 2008; 16: 25242528.
  • 84
    Kim JA, Park HS. Association of abdominal fat distribution and cardiometabolic risk factors among obese Korean adolescents. Diabetes Metab 2008; 34: 126130.
  • 85
    Kwon JH, Jang HY, Oh MJ, etal. Association of visceral fat and risk factors for metabolic syndrome in children and adolescents. Yonsei Med J 2011; 52: 3944.
  • 86
    Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to visceral fat and insulin sensitivity. Diabetes Care 2006; 29: 5156.
  • 87
    Nagy TR, Gower BA, Trowbridge CA, Dezenberg C, Shewchuk RM, Goran MI. Effects of gender, ethnicity, body composition, and fat distribution on serum leptin concentrations in children. J Clin Endocrinol Metab 1997; 82: 21482152.
  • 88
    Roemmich JN, Clark PA, Lusk M, etal. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release. Int J Obes Relat Metab Disord 2002; 26: 701709.
  • 89
    Roemmich JN, Clark PA, Walter K, Patrie J, Weltman A, Rogol AD. Pubertal alterations in growth and body composition. V. Energy expenditure, adiposity, and fat distribution. Am J Physiol Endocrinol Metab 2000; 279: E1426E1436.
  • 90
    Russell M, Mendes N, Miller KK, etal. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 2010; 95: 12471255.
  • 91
    Satake E, Nakagawa Y, Kubota A, Saegusa H, Sano S, Ohzeki T. Age and sex differences in fat distribution in non-obese Japanese children. J Pediatr Endocrinol Metab 2010; 23: 873878.
  • 92
    Togashi K, Masuda H, Iguchi K. Effect of diet and exercise treatment for obese Japanese children on abdominal fat distribution. Res Sports Med 2010; 18: 6270.
  • 93
    Treuth MS, Hunter GR, Figueroa-Colon R, Goran MI. Effects of strength training on intra-abdominal adipose tissue in obese prepubertal girls. Med Sci Sports Exerc 1998; 30: 17381743.
  • 94
    Andersen GS, Girma T, Wells JC, Kaestel P, Michaelsen KF, Friis H. Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. Pediatr Res 2011; 70: 501506.
  • 95
    Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. Pediatr Res 2000; 47: 578585.
  • 96
    Rodriguez G, Samper MP, Ventura P, Moreno LA, Olivares JL, Perez-Gonzalez JM. Gender differences in newborn subcutaneous fat distribution. Eur J Pediatr 2004; 163: 457461.
  • 97
    Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 2007; 21: 415430.
  • 98
    Nindl BC, Scoville CR, Sheehan KM, Leone CD, Mello RP. Gender differences in regional body composition and somatotrophic influences of IGF-I and leptin. J Appl Physiol 2002; 92: 16111618.
  • 99
    Wells J. The Evolutionary Biology of Human Body Fatness: Thrift and Control. Cambridge University Press: Cambridge, 2009.
  • 100
    Addo OY, Himes JH. Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents. Am J Clin Nutr 2010; 91: 635642.
  • 101
    Alwis G, Rosengren B, Stenevi-Lundgren S, Duppe H, Sernbo I, Karlsson MK. Normative dual energy X-ray absorptiometry data in Swedish children and adolescents. Acta Paediatr 2010; 99: 10911099.
  • 102
    Chumlea WC, Guo SS, Kuczmarski RJ, etal. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord 2002; 26: 15961609.
  • 103
    Kurtoglu S, Mazicioglu MM, Ozturk A, Hatipoglu N, Cicek B, Ustunbas HB. Body fat reference curves for healthy Turkish children and adolescents. Eur J Pediatr 2010; 169: 13291335.
  • 104
    Moreno LA, Mesana MI, Gonzalez-Gross M, etal. Body fat distribution reference standards in Spanish adolescents: the AVENA Study. Int J Obes Relat Metab Disord 2007; 31: 17981805.
  • 105
    Nakao T, Komiya S. Reference norms for a fat-free mass index and fat mass index in the Japanese child population. J Physiol Anthropol Appl Human Sci 2003; 22: 293298.
  • 106
    van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child 2002; 87: 341347. discussion 341–347.
  • 107
    Wells JC, Williams JE, Chomtho S, etal. Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr 2010; 91: 610618.
  • 108
    Wells JC, Cole TJ, Bruner D, Treleaven P. Body shape in American and British adults: between-country and inter-ethnic comparisons. Int J Obes Relat Metab Disord 2008; 32: 152159.
  • 109
    Wells JCK. Sexual dimorphism in body composition across human populations: associations with climate and proxies for short- and long-term energy supply. Am J Hum Biol 2012: Epub 18 Feb 2012: DOI: 10.1002/ajhb.22223.
  • 110
    Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc 2007; 66: 423434.
  • 111
    Rogers IS, Ness AR, Steer CD, etal. Associations of size at birth and dual-energy X-ray absorptiometry measures of lean and fat mass at 9 to 10 y of age. Am J Clin Nutr 2006; 84: 739747.
  • 112
    Goran MI. Ethnic-specific pathways to obesity-related disease: the Hispanic vs. African-American paradox. Obesity 2008; 16: 25612565.
  • 113
    Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006; 118: 13881393.
  • 114
    Browning JD, Szczepaniak LS, Dobbins R, etal. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 13871395.
  • 115
    Romeo S, Kozlitina J, Xing C, etal. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 14611465.
  • 116
    Goran MI, Walker R, Le KA, etal. Effects of PNPLA3 on liver fat and metabolic profile in Hispanic children and adolescents. Diabetes 2010; 59: 31273130.
  • 117
    Davis JN, Le KA, Walker RW, etal. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am J Clin Nutr 2010; 92: 15221527.
  • 118
    Le KA, Ventura EE, Fisher JQ, etal. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 2011; 34: 485490.
  • 119
    Larson-Meyer DE, Heilbronn LK, Redman LM, etal. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care 2006; 29: 13371344.
  • 120
    Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 2006; 83: 461S465S.
  • 121
    Sbarbati A, Osculati F, Silvagni D, etal. Obesity and inflammation: evidence for an elementary lesion. Pediatrics 2006; 117: 220223.
  • 122
    Le KA, Mahurkar S, Alderete TL, etal. Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-kappaB stress pathway. Diabetes 2011; 60: 28022809.
  • 123
    Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life – a systematic review. Obes Rev 2005; 6: 143154.
  • 124
    Stettler N, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 2002; 109: 194199.
  • 125
    Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006; 117: 12531261.
  • 126
    Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 2006; 195: 11001103.
  • 127
    Lake JK, Power C, Cole TJ. Child to adult body mass index in the 1958 British birth cohort: associations with parental obesity. Arch Dis Child 1997; 77: 376381.
  • 128
    Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr 2010; 91: 15601567.
  • 129
    Larson Ode K, Gray H, Ramel SE, Georgieff M, Demerath EW. Decelerated early growth in infants of overweight and obese mothers. J Pediatr 2012; in press.
  • 130
    Touger L, Looker HC, Krakoff J, Lindsay RS, Cook V, Knowler WC. Early growth in offspring of diabetic mothers. Diabetes Care 2005; 28: 585589.
  • 131
    Eriksson B, Lof M, Forsum E. Body composition in full-term healthy infants measured with air displacement plethysmography at 1 and 12 weeks of age. Acta Paediatr 2010; 99: 563568.
  • 132
    Knight B, Shields BM, Hill A, Powell RJ, Wright D, Hattersley AT. The impact of maternal glycemia and obesity on early postnatal growth in a nondiabetic Caucasian population. Diabetes Care 2007; 30: 777783.
  • 133
    Regnault N, Botton J, Forhan A, etal. Determinants of early ponderal and statural growth in full-term infants in the EDEN mother-child cohort study. Am J Clin Nutr 2010; 92: 594602.
  • 134
    Hilson JA, Rasmussen KM, Kjolhede CL. High prepregnant body mass index is associated with poor lactation outcomes among white, rural women independent of psychosocial and demographic correlates. J Hum Lact 2004; 20: 1829.
  • 135
    Donath SM, Amir LH. Does maternal obesity adversely affect breastfeeding initiation and duration? J Paediatr Child Health 2000; 36: 482486.
  • 136
    Fields DA, Demerath EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast-milk with infant growth and body composition. Pediatr Obes 2012: Epub 10 May 2012: DOI: 10.1111/j.2047-6310.2012.00059.x.
  • 137
    Gianni ML, Roggero P, Taroni F, Liotto N, Piemontese P, Mosca F. Adiposity in small for gestational age preterm infants assessed at term equivalent age. Arch Dis Child Fetal Neonatal Ed 2009; 94: F368F372.
  • 138
    Ramel SE, Gray HL, Ode KL, Younge N, Georgieff MK, Demerath EW. Body composition changes in preterm infants following hospital discharge: comparison with term infants. J Pediatr Gastroenterol Nutr 2011; 53: 333338.
  • 139
    Ramel SE, Davern B, Gray H, Georgieff M, Demerath EW. Reference body composition data for preterm infants. E-PAS2012:2860.1.
  • 140
    Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology 2012; 102: 1924.
  • 141
    Pfister K, Gray H, Miller N, Demerath EW, Georgieff M, Ramel SE. Body composition and brain development of preterm infants. E-PAS2012:2860.3.
  • 142
    Tirosh A, Shai I, Afek A, etal. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med 2011; 364: 13151325.
  • 143
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 1999; 14: 16721679.
  • 144
    Ellis JD, Carron AV, Bailey DA. Physical performance in boys from 10 through 16 years. Hum Biol 1975; 47: 263281.
  • 145
    Sherar LB, Mirwald RL, Erlandson MC, Baxter-Jones AD. Is boys’ physical activity in childhood associated with being overweight in mid-adulthood? A longitudinal study spanning 35 years. Can Stud Popul 2007:8599.
  • 146
    Sherar LB, Eisenmann JC, Chilibeck PD, etal. Relationship between trajectories of trunk fat mass development in adolescence and cardiometabolic risk in young adulthood. Obesity 2011; 19: 16991706.
  • 147
    Flegal KM, Wei R, Ogden CL, Freedman DS, Johnson CL, Curtin LR. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am J Clin Nutr 2009; 90: 13141320.
  • 148
    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 2010; 303: 242249.
  • 149
    Inge TH, Krebs NF, Garcia VF, etal. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics 2004; 114: 217223.
  • 150
    Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Prev Med 1993; 22: 167177.
  • 151
    Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869873.
  • 152
    Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends Endocrinol Metab 2010; 21: 337344.
  • 153
    Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc 2010; 110: 571584.
  • 154
    Inge TH, Miyano G, Bean J, etal. Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents. Pediatrics 2009; 123: 214222.
  • 155
    Kohli R, Stefater MA, Inge TH. Molecular insights from bariatric surgery. Rev Endocr Metab Disord 2011; 12: 211217.
  • 156
    Lubrano C, Mariani S, Badiali M, etal. Metabolic or bariatric surgery? Long-term effects of malabsorptive vs restrictive bariatric techniques on body composition and cardiometabolic risk factors. Int J Obes Relat Metab Disord 2010; 34: 14041414.
  • 157
    Csendes A, Maluenda F, Burgos AM. A prospective randomized study comparing patients with morbid obesity submitted to laparotomic gastric bypass with or without omentectomy. Obes Surg 2009; 19: 490494.
  • 158
    Herrera MF, Pantoja JP, Velazquez-Fernandez D, etal. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass: a randomized trial. Diabetes Care 2010; 33: 14131418.
  • 159
    Klein S, Fontana L, Young VL, etal. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004; 350: 25492557.
  • 160
    Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 2002; 26: 193199.
  • 161
    Inge TH, Jenkins TM, Zeller M, etal. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J Pediatr 2010; 156: 103108.
  • 162
    Goran MI, Gower BA, Treuth M, Nagy TR. Prediction of intra-abdominal and subcutaneous abdominal adipose tissue in healthy pre-pubertal children. Int J Obes Relat Metab Disord 1998; 22: 549558.
  • 163
    Goran MI, Kaskoun M, Shuman WP. Intra-abdominal adipose tissue in young children. Int J Obes Relat Metab Disord 1995; 19: 279283.
  • 164
    Benfield LL, Fox KR, Peters DM, etal. Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. Int J Obes Relat Metab Disord 2008; 32: 9199.
  • 165
    Brambilla P, Bedogni G, Moreno LA, etal. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes Relat Metab Disord 2006; 30: 2330.
  • 166
    Barreira TV, Staiano AE, Harrington DM, Heymsfield SB, Smith SR, Bouchard C, Katzmarzyk PT. Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women. Mayo Clin Proc 2012; 87: 452460.
  • 167
    Bouchard C. BMI, fat mass, abdominal adiposity and visceral fat: where is the ‘beef. Int J Obes 2007; 31: 15521553.
  • 168
    Camhi SM, Bray GA, Bouchard C, etal. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity 2011; 19: 402408.
  • 169
    Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB. Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr 1998; 132: 204210.
  • 170
    Janssen I, Katzmarzyk PT, Srinivasan SR, etal. Combined influence of body mass index and waist circumference on coronary artery disease risk factors among children and adolescents. Pediatrics 2005; 115: 16231630.
  • 171
    Li L, Pinot de Moira A, Power C. Predicting cardiovascular disease risk factors in midadulthood from childhood body mass index: utility of different cutoffs for childhood body mass index. Am J Clin Nutr 2011; 93: 12041211.
  • 172
    Magnussen CG, Koskinen J, Chen W, etal. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation 2010; 122: 16041611.
  • 173
    Savva SC, Tornaritis M, Savva ME, etal. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 2000; 24: 14531458.
  • 174
    Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tatò L. Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res 2001; 9: 179187.
  • 175
    Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics 2004; 114: e198e205.
  • 176
    Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev 2010; 23: 247269.
  • 177
    Fujita Y, Kouda K, Nakamura H, Iki M. Cut-off values of body mass index, waist circumference, and waist-to-height ratio to identify excess abdominal fat: population-based screening of Japanese school children. J Epidemiol 2011; 21: 191196.
  • 178
    Bennett B, Larson-Meyer DE, Ravussin E, etal. Impaired insulin sensitivity and elevated ectopic fat in healthy obese vs. nonobese prepubertal children. Obesity 2012; 20: 371375.
  • 179
    Maffeis C, Manfredi R, Trombetta M, etal. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2008; 93: 21222128.
  • 180
    Maffeis C, Banzato C, Rigotti F, etal. Biochemical parameters and anthropometry predict NAFLD in obese children. J Pediatr Gastroenterol Nutr 2011; 53: 590593.
  • 181
    Maffeis C, Banzato C, Talamini G. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr 2008; 152: 207213.
  • 182
    Hirschler V, Molinari C, Maccallini G, Aranda C, Oestreicher K. Comparison of different anthropometric indices for identifying dyslipidemia in school children. Clin Biochem 2011; 44: 659664.