Get access

Semiconductor-Insulator Transition in Undoped Rutile, TiO2, Ceramics


Author to whom correspondence should be addressed. e-mail:


The electrical conductivity of undoped rutile ceramics is very dependent on sample processing conditions, especially the temperature and atmosphere during sintering and the subsequent cooling rate. Samples become increasingly semiconducting when quenched from temperatures above ~700°C without the need for a reducing atmosphere. Thus, samples quenched from 1400°C in air have conductivity ~1 × 10−2 Scm−1with activation energy ~0.01(1) eV over the temperature range 10–100 K, whereas similar samples that are slow cooled or annealed in air at 300°C–500°C are insulating with activation energy 1.67(2) eV and conductivity, e.g., 1 × 10−7 Scm−1 at 400°C. The very wide range of electrical properties is attributed to variations in oxygen content which are too small to be detected using thermogravimetry. Impedance analysis shows that, depending on cooling rate, partially oxidized samples may be prepared in which samples retain a semiconducting core, but have an oxidized outer layer.

Get access to the full text of this article